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Course Description

The course is an introduction to computational thinking: how we can describe and solve problems using
a computer. Using the Python language, students will learn how to write algorithms, manipulate infor-
mation, and design programs to make computers useful tools. Through lectures, short homeworks, and
weekly programming projects, students will learn about abstraction, how to divide and organize a process
into appropriate components, how to describe processes in a computer language, and how to analyze and
understand the behavior of their programs. Students will communicate the results of their work through
project writeups.

Prerequisites: None

We live in a society exquisitely dependent on science and technology, in which hardly anyone
knows anything about science and technology.

Carl Sagan

Desired Course Outcomes

A. Students can read a simple program and correctly identify its behavior

B. Students can convert a problem statement into a working program that solves the problem.

C. Students understand abstraction and can break down a program into appropriate procedural and object-oriented
components

D. Students can generate an approximate model of computer memory and describe how an algorithm affects its
contents.

E. Students can communicate the result of their work and describe an algorithm.

This material is copyrighted. Individuals are free to use this material for their own educational, non-
commercial purposes. Distribution or copying of this material for commercial or for-prot purposes with-
out the prior written consent of the copyright owner is a violation of copyright and subject to fines and
penalties.
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1 Computational Thinking

If you were trapped on a desert island, why would you want to be a computer scientist? To be honest, if
you were alone, you probably would be better served being a herbologist or handy at spear fishing. On the
other hand, if you were one of a thousand people on a desert island, it would be good if at least one of you
was a computer scientist. Having someone who understood how to design algorithms and processes would
help to ensure efficient and fair distribution of resources, create fast communication protocols in case of
emergencies, and design methods of communication that would be likely to reach rescuers.

Computer science is about solving problems computationally. To solve a problem computationally means
that you can write out a series of steps which, if followed precisely, generates a solution to a problem.
One benefit of being able to solve a problem computationally is that we can probably build a machine to
do it. Problems such as addition, subtraction, multiplication, and division are examples of computational
problems. So are problems like packing boxes in a truck, detecting faces in an image, or calculating who
to play in a fantasy football team each week. All of these problems have algorithms which, if carefully
described and followed precisely, solve the problem in a way that is useful.

There are significant differences between the problems listed above, however, and the kinds of solutions
they require. Furthermore, there are always many different algorithms for solving a given problem. How
do we analyze algorithms to determine which one is a better solution? What does it mean for an algorithm
to be better? Some algorithms are faster than others. Some algorithms require more resources like storage
and memory. Some algorithms will solve a problem perfectly, but won’t return a solution until the sun has
swallowed the earth several billion years from now. Computer scientists have developed a set of methods
and theory for trying to answer these questions.

As an example, we can generate two algorithms for multiplying positive integers if we have the capability
to add and subtract unsigned binary numbers.

What is an unsigned binary number? An unsigned binary number is simply a base 2 represen-
tation of the non-negative integers (0 and up). Each digit in a binary number must be either a
one or a zero. Just as the digits in a base 10 number are the digit multiplied by a power of 10,
so the digits in a binary number are the digit (0 or 1) multiplied by a power of 2.

42 = 101010b

= 1 ∗ 25 + 0 ∗ 24 + 1 ∗ 23 + 0 ∗ 22 + 1 ∗ 21 + 0 ∗ 20

= 32 + 0 + 8 + 0 + 2 + 0
= 42

(1)

There are also ways of representing negative numbers and floating point numbers using binary.
Those methods are generally covered in a digital logic or computer architecture course.
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Algorithms for multiplying non-negative binary numbers

• Algorithm 1: Given the multiplication A×B where A and B are non-negative binary numbers

Let C start with the value zero
While B is not zero

Add A to C
Subtract 1 from B

Return the value of C

• Algorithm 2: Given the multiplication A×B where A and B are non-negative binary numbers

Let C start with the value zero
For each digit of B from left to right

Shift C left by one position
If the digit is 1

Add A to C
Return the value of C

Example: 11× 5

If both numbers are 8 digit binary numbers (11 = 00001101b and 5 = 00000101b) then the first algorithm
goes through its loop five times, while the second algorithm goes through its loop eight times. Which
algorithm is faster?

• Will algorithm 1 always execute its loop only five times?

• Will algorithm 2 always execute its loop eight times?

• How many actual additions does each algorithm execute in this example?

• How can we describe the complexity of these two algorithms in more generic terms?

• Will these algorithms always run fast enough to be useful?

These are examples of questions that are important to understand when we are developing algorithms for
real world problems. The answers are not always obvious.

Consider the task of packing boxes into a truck. If the boxes are all the same size and shape, the problem is
not difficult because the order in which the boxes are placed into the truck doesn’t matter. But what if the
boxes are all different sizes? Which box should go in first? Which one should go in second? How should
they be arranged? If there are a small number of boxes, then it might not matter how they are put into the
truck, and any arrangement will work. If there are obviously many more boxes than can possibly fit in the
truck, then we know the task can’t be done. But in that in-between case it’s not clear what the answer is, or
how the boxes should be packed.

It turns out that, as far as any computer scientist has been able to determine, the only algorithm that can
guarantee finding the optimal packing strategy is to try all of the possible arrangements. Unfortunately,
that means we may not be able to discover the answer in time for it to be useful. There may be so many
combinations to test that the sun may have swallowed the earth before the algorithm is complete.

There are, however, algorithms that have a good chance of finding a solution that run much, much faster.
Such algorithms try to find good solutions to the problem without requiring that it be the absolute best
solution. Computer scientists have studied problems like box packing to figure out just how good these
approximate algorithms can be. In many cases they can show that the good solutions generated quickly will
always be within a certain tolerance of the absolute best possible solution. For real applications that have to
produce answers in useful time, that may be good enough.
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There are also problems like choosing which players to play each week in fantasy football that will obviously
never be 100% correct because they are trying to predict the future. A similar problem is trying to predict
the actions of a stock, or the stock market as a whole. The goal with algorithms that deal with uncertainty is
to provide an answer that is better than chance (or better than someone else’s algorithm) over the long term.
These algorithms not only need to be efficient and run fast, but they also need to incorporate uncertainty
and probability into their calculations. One reason computer scientists are in high demand, especially in the
financial sector, is that they understand how to write algorithms that handle uncertainty and that can learn
how to predict the future from data about the past. Given the number of trades based on the decisions of
computer models, they are clearly working well enough to make money.

As argued by Jeannette Wing, former head of CMU CS, computational thinking is cross-cutting, enabling,
and increasingly important in our society. It allows us to solve complex problems, much as engineering
methods allow an engineer to build a complex system. Computer scientists deal not only with real systems,
however, but also virtual ones. Virtual systems are not limited by gravity or physics, only by the reali-
ties of computation. If we understand how to design and analyze algorithms, then we understand what is
possible.

1.1 Abstraction and Computing

When analyzing very big, complex problems, one of the most important tools is abstraction. Abstraction is
the process of representing something complex as something simpler, but maintaining the essential qualities
of the original. Humans use abstraction all the time to generate more concise, informative descriptions of
the world.

For example, when your friend asks what you did this morning, you don’t generally give a description
of every step you took from the time you got up. Instead, you abstract collections of actions into short
descriptions: “I got ready”, “I got a really nice cup of coffee”, and “I slogged through the snow to get to
class”. These abstractions get across the main points of your morning that you wish to convey without
cluttering the conversation with things like, “and then I took my 1346th step with my left foot and squished
into the snow about 6 inches”. Your friend, for example, might like to know where to get good coffee. But
they’re not going to hang around to find out if you have to go through 2000 footsteps to get there.

Finding the right level of abstraction is important.

• If the amount of abstraction is too great, then the abstraction is difficult to use outside of a specific
context (prisoner joke telling)

• If the amount of abstraction is too small, then the details confuse the important aspects of the problem.

Another way of thinking about the level of abstraction is thinking about it as how to define the instruction set,
which is a combination of vocabulary and the semantic meaning attached to each vocabulary word.

One of the most important issues in designing algorithms is to decide how much abstraction to use for a
particular problem. One common method of building complex software systems is to begin with a highly
abstract representation of the problem that highlights the key aspects of the task. Then system developers
break apart the high level abstractions and start to describe the next level down. You can imagine this as an
upside-down tree. At some point the developers don’t need to break down a particular branch any more and
can solve that sub-problem by writing code. Once there is code written for all of the outermost leaves, the
system is complete. This is a top-down method of designing systems and works very well for large, complex
projects.
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Example: how would you tell someone to draw a face

• Level 1: Tell them to draw a face. The problem cannot be abstracted much more than this.

• Level 2: Divide the face into components (eyes, ears, nose, mouth) and tell them to draw
the specific components. Note that you need instructions to describe spatial relationships.

• Level 3: Describe the face as a series of line segments or arcs in particular locations,
lengths and orientations.

• Level 4: Describe the face as a set of points that are drawn (stippling). Each point is
defined by an (x, y) position.

What are the strengths and weaknesses of each level of abstraction?

• Level 1: Concise instruction, easy to communicate, but it requires a lot of information
in the definition of the instruction and is specific to faces, possibly even a single face. A
close physical example is a rubber stamp with a face etched on it.

• Level 2: Reasonably concise representation, enables variation in the faces, the instruc-
tion set enables drawing of a variety of non-face things. A close physical example is a
traditional typewriter with a set of stamps.

• Level 3: More lengthy set of instructions to draw a single face, but the instructions are
generic to most kinds of drawing. A close physical example is an x-y plotter.

• Level 4: very long and detailed set of instructions, completely generic, painful to describe
a single picture, but easy to automate. A close physical example is a dot-matrix printer.

How much information is provided by each representation? Note that we have to take into
account both the definition of the instructions (protocol) and the set of instructions themselves.
But there is a slight difference in how we account for them. The definition of the instructions
only needs to be transferred to the target once. The instructions themselves must be transferred
each time the program is supposed to run.

• Level 1: All of the information is in the definition. The instruction could be a single bit of
information, or at most position and orientation (x, y, θ).

• Level 2: Most of the information is in the definition. The instructions need to contain
multiple bits of information.

• Level 3: More of the information is likely to be in the instructions. Each instruction has a
similar representation.

• Level 4: Almost all of the information is in the instructions. The definition requires little
information: put a dot here.

Note that it is difficult to say which level is best without having a particular application in mind.
There may be limitations on real-time transfer of information that require extensive definitions
to be set up beforehand (think Mars rovers). Alternatively, the system itself may need to be
simple (drawing dots) and there may be no significant limitations on communication (think
dot-matrix printer).
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Programming languages themselves are abstractions, too. A programming language like Python hides a lot
of complexity. A simple command like print ‘hello’ translates into thousands of low level machine
instructions. Some of the thing that go on include:

• The interpreter parses the string into a series of basic operations

• The string is passed on to a system that decodes it into a series of characters

• The system looks up the font being used in the terminal

• The system generates images for each letter

• The system puts the images in the right place in the video framebuffer

• The video framebuffer gets refreshed and the characters appear on the screen

If we were to delve into what was happening in a single one of the above steps, we would find a series of low
level machine instructions that represent the operations required. Those machine instructions would consist
of a limited set of actions. If you distill all the things a computer is built to do, they consist of only four
types of actions:

• Store data

• Move data

• Manipulate data

• Adjust control flow based on data

If we then looked at how just one of the instructions was executed, we could see how the data was moving
around the CPU. Delving even deeper, we could examine the workings of a single component on the CPU
and describe it as a set of digital logic gates. Looking at one digital logic gate, we would see that it is
built out of a set of transistors. The configuration of transistors produces an electrical circuit with certain
properties. A single transistor consists of layers of silicon through which the electrons move.

The only way we (humans) can create such a complex thing as a computer that has 2 billion transistors,
executes 3 billion instructions per second and doesn’t melt or blow up is to abstract many, many levels. No
one person can be an expert at every level.

Where in the computing hierarchy are we studying?

• Theory/Mathematics

• Applications

• Operating System

• Computer Architecture

• Computer Organization

• Digital Logic

• Electronics

• VLSI Design

• Silicon wafer design

• Physics, chemistry
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For this class, we’re working somewhere in between the operating system and applications. We are using
some applications to build other applications. We are also using some parts of the operating system to build
and run our programs. Computer science as a field begins somewhere between digital logic and computer
organization and goes all the way up to pure theory. It has significant overlaps with mathematics, computer
engineering and electrical engineering in terms of what computer scientists study.

So what is our abstraction? What is a useful way of thinking about how to describe a series of actions to the
computer?

• The four basic categories of computer actions form a reasonable basis for our abstraction

• Any python instruction falls into one of the four categories

• But we can build new abstractions for collections of python instructions (e.g. turtle graphics)

Part of the power of computing is that we can create new abstractions by defining collections of instructions
as a new concept. For example, we could collect the turtle graphics motions

forward(50)
right(90)
forward(50)
right(90)
forward(50)
right(90)
forward(50)
right(90)

and call that collection the function square(). If we can create that function, then any time we need a
square we can call the function instead of writing out 8 function calls.

Therefore, if we give ourselves the ability to define new commands that incorporate collections of other
commands, then we have the power to set our level of abstraction arbitrarily.

1.2 Algorithms

Whatever our level of abstraction, the end result of defining a solution to a problem is an algorithm. An
algorithm specifies the series of commands required to reach a solution. Each command can also represent
an algorithm. For example, the square() function defined above contains eight commands that constitute
the algorithm for drawing a square.

To describe algorithms to computers we must use some kind of interface. The most common interface is
a programming language. A programming language is designed in such a way that there is only a single
series of actions defined by the program. Computers can’t handle ambiguity, so if there are multiple possible
interpretations for a program, the computer cannot run the program.

Because a computer requires us to be explicit about what we want it to do, we have to follow the rules of the
programming language, whatever level of abstraction we choose to use. The rules constitute the agreement
between you and the computer about what the words and syntax in the language mean. The rules of the
programming language are absolute. If you don’t follow them, your program will not work.

Note that rules are different from conventions. The rules everyone has to follow or the program doesn’t work.
There are also many conventions in programming that people follow in order to make their code follow a
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more standardized format. This standardization makes it easier for people other than the programmer to
read the program and understand what is going on.

Some common conventions include:

• How statements are written. Programming languages often allow you to use white space however you
like (including not at all). Appropriate use of white space can make code much more readable.

• How variables are named. Variables hold information. If we use names for variables that are mean-
ingful, then it makes it easier to understand the code and avoid making mistakes.

• How functionality is organized. Programming languages let us break up code into pieces. If we
subdivide the code in ways that make sense, it makes it easier to edit and debug.

1.3 Computers

Computers contain many different components

• CPU: the central processing unit, which executes the programs

• Cache: temporary, very fast data storage

• Memory: temporary, fast data storage

• Motherboard: usually contains the CPU, cache, memory, and connectors for peripherals

• Hard drive: permanent, slow magnetic data storage

• CD/DVD drive: permanent, slow optical data storage

• Network: the infrastructure connecting computers, allowing them to exchange data

All aspects of a computer are controlled by the programs that run on the CPU. Anything the computer can
physically do can be controlled by a program. Very complex software systems may even run on multiple
computers and communicate via a network connection.

If you want to control specific parts of the computer (or create new parts for it), then you need to understand
how they work and how the parts of the computer talk to one another. Most of the time we don’t need that
level of control and we can use functions someone else wrote to do things like read and write files from the
hard drive or send data over a network.
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2 Describing Algorithms

In order to program a computer we have to use a programming language. There are many to choose from,
but to get started we’re going to use Python.

Python is an interpreted language, which means that there is a program that converts the python program
line by line into instructions the computer can actually execute. Because it is interpreted, the transformation
from Python to machine instructions takes place every time we want to run the python program.

Interpreted languages are nice because we can interact with the interpreter and try out various things quickly
without going through any intermediate steps. Unfortunately, because the interpreter is always between the
Python and the machine code, interpreted languages can be slow.

A language such as C or C++ is a compiled language. That means when you are done writing your C
program, you use a compiler to convert it to machine language. Then you run the machine language version
every time you run the application. That means if you make any changes to the code, you have to compile
it again before you run it. It also means that the code will generally run faster than the same operations
in Python; once the program is in machine code it doesn’t require any more interpretation to be run on the
computer since it is using the language of the computer hardware.

To start up the Python interpreter, type python in a Terminal window.

$ python

When the interpreter starts up, you can type in Python code. To exit the Python interpreter, type control-D
(hold down the control key and then type the D key).

2.1 Variables

One of the basic operations of a computer is that it can store data. Physically, data is stored in memory. Every
memory location has an address, which is an actual binary number. Rather than specify a memory location
using an address, however, programming languages let us describe memory locations using symbols. We can
even abstract away from the physical memory and think about a virtual memory space where each variable
represents some arbitrary piece of information. How and where a piece of information is actually stored in
memory is not something we necessarily need (or want) to know when writing algorithms.

Variables let us describe operations on a particular piece of information without us needing know what the
information is beforehand. In some cases, the operations we want to perform require the information to be
of a certain type.

Note that we use variables all the time when we are talking about the world and about manipulating the
world. For example, pick up some thing in your left hand. Now transfer the thing to your right hand. Now
set the thing back down where it was. Note that these instructions did not specify what you picked up. The
description of the process created a variable, in this case called “thing”, that represented the item you picked
up. The particular characteristics or type of the thing could vary significantly. However, we can probably
put at least one constraint on the type of the thing: you could pick it up and hold it in one hand.
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What are variables in Python?

• A variable holds a piece of information, or data (a thing)

• Any variable in Python can hold any kind of data

• Once you assign data to a variable, the variable has a ’type’ to it that specifies how to interpret the
information (its semantic interpretation)

• You can do different things with different types

What are the rules for the names of variables in Python?

• The name has to start with a letter or an underscore character

• A name cannot start with a number.

• Names can have letters or numbers in them but no punctuation marks except

• Names can be arbitrarily long

• Capitalization matters, so thing is different than Thing

• A variable name cannot be a keyword like if or for

• To assign a value to a variable, use the assignment operator =

• Assigning a value to a variable creates the variable if it does not already exist

When assigning a value to a variable, the value of the expression on the right side of the operator is moved
into the variable specified by the expression on the left side of the operator. Therefore, information always
flows from right to left in an assignment. It is important to think properly about assignment expressions.
The expression

x = 6

should not be described as “x equals 6”. Instead, you should think about it as “x gets 6” or “x is assigned
the value 6”. A single equals sign is not an equality statement in Python (or most computer languages); it
describes the movement of data from one place to another. For example, the expression

x = x + 1

makes no sense if we say “x equals x plus 1”. But it does make sense if we think of it as “assign to x the
sum of the current value of x and the integer 1”.

Just as there are rules for variable names, there are also conventions for variable names. Programmers
use conventions to encourage everyone to write code that other people can easily look at, read, and under-
stand.

• Variables that can change value generally start with lower case letters

• Variables should be descriptive about the values they hold

• Multi-word variables generally use capitalization or underscores (e.g. the big one, or theBigOne).
For most programming projects, the convention is selected up front.

c©2010 Bruce A. Maxwell 10 December 8, 2010



CS151: Problem Solving and Programming Lecture Notes

Variable names are easier to remember than numbers. However, they are still a significant cause of mistakes,
or bugs, in programs. There are two common types of bugs that occur with variables.

• Using a variable name before it is defined. In Python, you must assign a value to a variable before
you can use it on the right side of an assignment.

• Typos, especially improper capitalization or misspellings, are one of the most common errors in pro-
gramming. If you type the name of a variable incorrectly, it will often look like you are trying to use
a variable without previously defining it.

Example

To create a variable in python, you simply assign a value to the variable. To see the value of
a variable you can print it out or evaluate it as an expression. The latter means just type the
name of the variable and hit return. Typing just the name of the variable into the interpreter
asks Python to tell you the contents of the variable.

>>> x = 50
>>> print x
50
>>> x
50

Note that printing out a variable (which prints out its value) is not the same as evaluating an
expression, which prints out the value of the expression. The latter is going to be identical to
the right side of an assignment statement that would give the variable that value. The difference
is obvious in strings, for which evaluating the expression produces a string in quotes.

>>> x = ’Hi there’
>>>print x
Hi there
>>> x
’Hi there’

Typos are one of the most difficult errors to track down in python because variables are created
dynamically; all you have to do is assign a value to a variable name. In the example below, a
typo causes the last line of the program to generate an error.

>>> abigvariblename = 50

>>> asmallvariablename = 40

>>> anothervariable = abigvariablename + asmallvariablename

Traceback (most recent call last):
File "<stdin>", line 1, in ?

NameError: name ’abigvariablename’ is not defined

The problem is that abigvariablename is misspelled in the first line, while it is correctly
spelled in the third line.
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One of the most important things to remember is that once a variable has been assigned a value, that variable
takes on the type of its value. You can discover the type of the value a variable contains by using the type()
function.

>>> x = 10
>>> type(x)
<type ’int’>

>>> x = 10.0
>>> type(x)
<type ’float’>

>>> x = ’10’
>>> type(x)
<type ’str’>

>>> x = 10L
>>> type(x)
<type ’long’>

>>> x = complex(10, 10)
>>> type(x)
<type ’complex’>

>>> x = True
>>> type(x)
<type ’bool’>

2.1.1 Casting

Sometimes it is important to convert the contents of a variable into a particular type. For example, you may
want to convert an integer to a string in order to print it out, or covert a string to an integer in order to do
some math. Likewise, you may want to be explicit about doing floating point math versus integer math,
regardless of the particular data type of a variable.

The process of converting a data from one type to another is called casting. To cast a variable into particular
data type, put the name of the data type and then put the variable to cast inside parentheses. The standard
data types are chr, int, float, and str, which stand for character, integer, floating point, and string.

The following example shows conversions from integers to strings and strings to integers.

>>> x = "10"

>>> y = 5

>>> print int(x) + y
15

>>> print x + " and " + str(y)
10 and 15

2.1.2 Symbol Tables

In order to execute code, the Python interpreter has to keep track of what variables exist, what values they
hold, and what their types are. As a programmer, you also need to keep track of what variables you are
using, what information they hold, and the type of data they hold. Therefore, you need to have a model of
the computer in your head so that you can read code and predict or explain what it is going to do. If you use
an incorrect model as the basis for designing and writing code, then the code will not function the way you
expect.

A symbol table is a useful model of the way Python keeps track of variables and their relevant information.
You can use symbol tables to make predications about what a program will do when executed by the Python
interpreter and to understand its behavior.
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A symbol table is a chunk of memory on the computer. You can think of it as a table with rows and
columns. Each row corresponds to a variable. The first column is the variable’s symbol, or name, and the
second column is the variable’s value. Other columns in the table may correspond to information about the
variable’s type and other information required by the interpreter. For our purposes, it is sufficient to think of
the table has containing each variable’s name, value, and type.

When you start up the interpreter, Python initializes a global symbol table. Python has many internal vari-
ables it uses to keep track of the state of the interpreter, but for our purposes we can think of the initial global
symbol table as empty. Now consider the following four commands.

>>> a = 5

>>> b = 1.0

>>> c = "hello"

>>> a = b

>>> b = b + 1.0

When interpreting first assignment, Python first evaluates the right side of the assignment, which evaluates
to the integer value 5. It then examines the current symbol table to see if there is an entry for the symbol a.
Since there is no entry with that name, it adds a line to the symbol table and sets up the name a, the value
5, and the type integer. The symbol table is shown below.

Name Value Type
a 5 integer

When interpreting the second assignment, Python evaluates the right side of the assignment, which is the
floating point value 1.0. It then examines the current symbol table to see if there is an entry for the symbol
b. Since there is no entry with that name, it adds a line to the symbol table and sets up the name b, the value
1.0, and the type float.

Name Value Type
a 5 integer
b 1.0 float

Likewise, for the third line, Python ends up adding a third variable to the symbol table with the name c, the
value ‘‘Hello’’, and the type string.

Name Value Type
a 5 integer
b 1.0 float
c “hello” str

When interpreting the fourth line, Python first evaluates the right side of the expression. Since the right side
has the symbol b, Python looks in the current symbol table to discover if there is a symbol with that name.
Upon finding the symbol, Python looks at its value 1.0, which becomes the value of the right side of the
assignment. Python then looks to see if there is a symbol a in the symbol table. Upon finding the symbol a,
Python then copies the value of the right side of the expression into the variable a. Now the variables a and
b have the same value and type.
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Name Value Type
a 1.0 float
b 1.0 float
c “hello” str

To interpret the fifth line, Python again evaluates the right side of the expression by looking up the current
value of b and adding to it the value 1.0. The right side of the expression, therefore, has the value 2.0 with
the type float. It then uses the symbol table to look up the variable b again and assigns the value of the
right side to the value field of the variable b. Note that variable a still has the value 1.0. Using the symbol
table it is easy to understand why the values of a and b are different: they refer to different lines of the table
and different memory locations.

Name Value Type
a 1.0 float
b 2.0 float
c “hello” str

Symbol tables are a useful model for how Python stores and manipulates memory. As we introduce new
language constructs we will expand how we use symbol tables to form appropriate models of the computer.
As noted above, it is essential to have a model for the computer’s behavior that enables you to predict the
results of a program. Without a correct model, you cannot design code that will work as you intend.

2.2 Operators

Operators are the basic methods for manipulating data. Add, subtract, multiply and divide are all standard
in Python (as in most programming languages). In addition, Python provides a number of other useful
operators, including some support for complex numbers.

addition x + y subtraction x - y
multiplication x * y division x / y
floored result of x/y x // y remainder of x/y (modulo) x % y
exponentiation (xy) x ** y exponentiation (xy) pow(x, y)
divmod (x//y, x%y) divmod(x, y) absolute value abs(x)
complex number complex(x, y) complex conjugate of x x.conjugate()

Note that the same operator can have different effects on different types. Integer division, for example, is
different than floating point division. Integer division will not return a decimal value, while floating point
division will.

Addition on strings is concatenation. Multiplication of a string by an integer will duplicate the string the
specified number of times.

>>> a = "abc"
>>> a * 3
"abcabcabc"

>>> a = "abc"
>>> b = "def"
>>> a + b
"abcdef"

Mixing types in expressions leaves you in the most flexible type, if it works at all. Adding a float and an
integer results in a float because a float can represent an integer, but an integer cannot represent most floating

c©2010 Bruce A. Maxwell 14 December 8, 2010



CS151: Problem Solving and Programming Lecture Notes

point values. Adding an integer and a string will produce an error because it’s not clear what the meaning
of the expression should be.

Order of operation is important when writing expressions using operators. For example, multiplication
and division will occur before addition and subtraction. The complete ordering is given in the book. Use
parentheses as appropriate, even if you don’t need them, to clarify the order of operations and make the
expression more readable.

The following are a number of examples showing how parentheses can both change the order of operation
and make the expression more understandable.

>>> (5 * 4) + 3
23
>>> 5 * 4 + 3
23
>>> 5 * (4 + 3)
35
>>> (5 * 4) / 3
6
>>> 5 * 4 / 3
6
>>> 5 * (4 / 3)
5
>>> (5 - 4) + 3
4
>>> 5 - 4 + 3
4
>>> 5 - (4 + 3)
-2
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2.3 Functions

One of the most important capabilities of a programming language is the ability to modularize a program
into component parts. Most languages do this by permitting the programmer to create functions.

• We can define a new instruction, or function, as a series of instructions

• Functions can take parameters that affect their actions

• Functions allow us to subdivide a problem into more reasonable pieces.

• Functions abstract away from details

• Functions reduce the amount of code we have to type.

• Functions reduce errors by encapsulating code into reusable parts.

• Functions reduce errors by permitting us to test parts of the code independently.

Functions are great, because they help us to automate processes and focus on their important aspects (the
parameters). Functions can take parameters that define how the function is supposed to work. For example,
if you tell someone to draw a line 2in long, the function would be ”draw a line” and the parameter would be
(2in). The possible values of the parameters define the range of actions a function can execute.

In Python, function definitions begin with the def keyword. This is followed by the name of the function,
then the list of function parameters is given inside parentheses. Each parameter is a variable inside the
function and the variable names must be legal according to the Python rules (start with a character, include
only letters, numbers, or an underscore). The final syntax element of the function header is a colon.

def myfunction(arg1, arg2):

The instructions contained within a function follow the def statement. Python uses tabs to delineate what
instructions are contained inside a function. If the function statement begins at one level of tabbing, the
items within the function need to be tabbed at the next level.

def simpleFunction(x):
forward(x)
right(20)
backward(x)

There is no other syntax required for the function. The end of the function is indicated by the level of
tabbing. Once a statement occurs that is not tabbed over relative to the function header, the function is
terminated. White space, blank lines and comments within the function are allowed (in some cases encour-
aged). Except for using tabs to specify that statements are within a block, Python doesn’t care much about
white space.

Parameters allow us to pass values into functions. The parameters are local variables within the function.
Each parameter initially holds the value assigned to it when the function was called. You can change the
value contained in a parameter variable at any time within the function. However, common practice is to
avoid modifying parameter variables and to instead create local variables for values that need to change. As
with all variables, parameters can hold any data type. Use informative parameter names to make reading
and writing the code easier.
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Example: create a function that prints out the value and type of a parameter

>>> def lookat(a):
... print a
... print type(a)
...

>>> lookat(6)
6
<type ’int’>
>>> a = 5.0
>>> lookat(a)
5.0
<type ’float’>

Variables within a function have scope. Scope is where in your code you can access the value of a variable.
Variables declared inside a function cannot be accessed outside the function.

Parameters are passed to functions by value. That means a copy of the value passed into the function is
created for use inside the function. If you change the value of a parameter variable within the function, it
does not change anything else.

Example: create a function that tries to modify a variable. Note that the variable b exists only inside the
function. The reason is that each function has its own symbol table, which gets deleted when the function
exits.

>>> def changeit(b):
... print b
... b = 50
... print b
...

>>> a = 20
>>> changeit(a)
20
50
>>> a
20
>>> b
Traceback (most recent call last):
File "<stdin>", line 1, in ?

NameError: name ’b’ is not defined

Functions also let us design top-down solutions to problems. When confronted with a complex problem, we
should be able to subdivide the task into a small number of less complex steps. The complexity of each step
may still be significant, but if the subdivision is done well, each individual step will be less complex than its
parent.

• Think of each subdivision as a function

• Parameterize each step in terms of the important variables that get passed into the function

• Write the high-level code with placeholders for each function.

If each individual step is still too complex, we can repeat the process iteratively. At some point, we’ll end
up with steps that are possible to express in just a few instructions. Then we can write the code for each step
as a function.
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2.3.1 Function Symbol Tables

In order to predict the behavior of functions in Python, we need a model to represent the state of the com-
puter before, during, and after the function has executed. Just as Python keeps track of variables and other
symbols, like functions, in a symbol table, so it keeps track of the variables within a function using a symbol
table.

When we define a function, it creates a new entry in the top level symbol table, assuming the symbol does
not already exist. If the symbol already exists, then the new function definition overwrites the old value of
the symbol. As Python reads through a function definition, it also initializes the symbol table it will need
inside the function and sets it aside. The value and type of variables defined in the function are initially
undefined.

We we execute a function, Python initializes that function’s symbol table. In particular, it initializes the
entries for each parameter in the function definition, specifying their values and types upon entering the
function. To calculate the initial values, Python looks at the expression for each argument of the function
call. Each expression must evaluate to a value of a particular type. That value is then copied into the
function’s symbol table for the appropriate parameter entry.

Note that the value passed into a function is generally called an argument. The symbol that holds the value
of the argument inside the function is called a parameter.

Inside the function, Python places values for local variables into the function’s symbol table. A local variable
is any variable used on the left side of an assignment operator within the function. When trying to find the
value of a variable, Python always searches the function’s symbol table first, then searches the global symbol
table if no local variable with the same symbol exists. Note that if the code creates a local variable at any
point in the function (uses it on the left side of an assignment), then Python will not look in the global symbol
table for that variable because the variable’s identifier will exist in the function’s symbol table.

The order in which Python searches symbol tables enables situations where local variables hide global
variables because they share the same symbol.
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In the following example we can follow the execution process through the global and function symbol
tables.

def euclid(x1, y1, x2, y2):
dx = x1 - x2
dy = y1 - y2
dist = (dx * dx + dy*dy)**0.5
return dist

a = 0.0
b = 0.0
c = 2.0
d = 2.0
dist = euclid( a, b, c, d )
print dist

Global symbol table before the call to the euclid function:
Name Value Type
a 0.0 float
b 0.0 float
c 2.0 float
d 2.0 float
euclid function data function

Function symbol table at the beginning of euclid:
Name Value Type
x1 0.0 float
y1 0.0 float
x2 2.0 float
y2 2.0 float
dx undef undef
dy undef undef
dist undef undef

Function symbol table at the end of euclid:
Name Value Type
x1 0.0 float
y1 0.0 float
x2 2.0 float
y2 2.0 float
dx -2.0 float
dy -2.0 float
dist 2.828 float

Global symbol table on last line of the top level
Name Value Type
a 0.0 float
b 0.0 float
c 2.0 float
d 2.0 float
dist 2.828 float

Before the call to euclid, the global symbol
table contains entries for the four variables a,
b, c, d and the function euclid.

At the beginning of the euclid function,
Python copies the values from a, b, c, d to
the parameters x1, y1, x2, y2. The local vari-
ables dx, dy, and dist are initially undefined.

At the end of the euclid function, all of the
variables have values and types. The return
statement becomes the value of the function
call if the function is on the right side of an
assignment. Note that the local variable dist
and the global variable dist are in different ta-
bles.

The assignment statement copies the return
value of the function to a new entry in the
global symbol table called dist. Python clears
the function’s symbol table when the function
exits. Only the global symbol table variables
exist at the top level.
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Example

Consider the task of creating a face of a given size at a particular location and orientation. We can break the
problem into a series of steps as below.

1. Move the turtle to the position and orientation of the face

2. Draw the mouth

3. Draw the nose

4. Draw the eyes

Let’s create a function for each of these steps. What parameters are required for each component?

1. positionTurtle(x0, y0, a) - requires the (x, y) location and angle a.

2. mouth(size) - requires the size of the face

3. nose(size) - requires the size of the face

4. eyes(size) - requires the size of the face

The first function we can write directly using the commands goto(x0, y0) and left(a). Given the simplicity
of the task, there is no reason to subdivide it further.

The mouth function could be quite complex. For example, we could draw lips and teeth, or we could just
draw a simple line. In the former case, we probably want to subdivide the task some more, while in the latter
we can just encode the line.

Likewise, the nose function could be made complex if we tried to draw nostrils and shading. Or it could
again be a single line.

The eyes function makes sense to subdivide since there are two eyes. We could divide it into four steps.

1. Position the turtle for the first eye

2. Draw the first eye

3. Position the turtle for the second eye

4. Draw the second eye

Drawing an eye could then be made a function, possibly parameterized by pupil location.

The end result of this subdivision is a tree whose leaves contain most of the code that does the actual work.
Note that by subdividing the task in a top-down fashion we have reduced the amount of code we have
to write compared to no subdivision at all. We also didn’t have to think very hard about any individual
function.

c©2010 Bruce A. Maxwell 20 December 8, 2010



CS151: Problem Solving and Programming Lecture Notes

2.3.2 Algorithm design using functions

Modularity, as noted above, is one of the most important aspects of algorithm design. Functions are the
primary method of incorporating modularity into algorithm design.

• Code to do a particular task should be written only in one place. Why?

• Modularity enables easy re-use of code. How?

• Modularity enables faster debugging. How?

• Modularity makes it easier to modify functionality. Why?

A common design process when writing small programs is as follows:

1. Define the task using natural language

2. Identify the inputs and outputs of the task

3. Recursively break down the problem into smaller steps

4. Organize the steps, noting the input and output requirements of each step

5. Identify what the individual functions should be, noting where in the steps there are similar input and
output requirements.

6. Generate some intermediate representation of the algorithm

• Flow chart

• Pseudo-code style comments

• Pictures or diagrams

7. Write code

8. Verify and test the code

One of the most important habits to develop in programming is to test often. A concept called unit testing,
proposes that each function, or unit of a program should be tested individually before being combined as a
whole. Python actually has a method for unit testing built into it that we will look at a bit further on in the
course.
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2.4 Control Flow

Sometimes when writing a solution to a problem, we don’t want the same thing to occur every time. Some-
times we want the computer to react to input and change its actions based on the input.

In order to control the flow of a program, we need the following tools.

• Syntax and keywords for the control flow statement

• Expressions that evaluate to true or false

• A method of specifying which statements are dependent upon the expression

The primary method of conditional control flow is the if statement. A simple if statement controls whether
a single block of code is executed or not.

if <expression>:
<statements>

In order to generate expressions, we need new operators that evaluate to true or false. Comparison operators
provide the tools for testing the relative qualities of variables.

• a == b - returns true if the value of a is the same as the value of b

• a < b - returns true if the value of a is less than b

• a <= b - returns true if the value of a is less than or equal to b

• a > b - returns true if the value of a is greater than b

• a >= b - returns true if the value of a is greater than or equal to b

• a != b - returns true if a is not equal to b

Logical operators let us mix and match expressions that evaluate to boolean values (true or false).

• a and b - evaluates to true if both a and b are true

• a or b - evaluates to true if a is true, b is true, or both are true

• not a - evaluates to true if a is false

So if we wanted to check if a number is within a certain range, we could use the expression

a > lowerBound and a < upperBound

Note that order of operation is important here. The comparison operators have higher precedence so that the
expression does what we expect. In order to avoid mistakes and enhance readability, however, we may want
to consider putting parentheses around the two comparison operator expressions.

(a > lowerBound) and (a < upperBound)

Note that because python is cool, you can also do the same test using the syntax

lowerBound < a < upperBound

and it will do the right thing.
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Given that we can now create boolean expressions, how do we indicate what code is conditional on the
expression? Turns out we use the same mechanism used for functions: statements that are consecutively
tabbed in after the if statement are executed if the expression evaluates to true.

if a > b:
print str(a) + ’ is greater than ’ + str(b)

Often we have cases where we want to do one series of actions if the expression evaluates to true and another
series of actions if the expression evaluates to false. In that case, we can use an if-else type of control flow
that makes use of the keyword else to indicate the code that should be executed if the expression evaluates
to false.

if a > b:
print ’a is greater than b’

else:
print ’b is less than or equal to b’

Sometimes we also have cases where there may be many different actions we want to consider on input. So
long as we can express each case as a boolean expression, we can consider each case using an if-elif-else
type of control flow.

if a > b:
print ’a is greater than b’

elif a < b:
print ’a is less than b’

else:
print ’a is equal to b’

There can be as many elif cases as necessary for the situation.

An if statement let’s us execute different code based on run-time data. That means, the order in which the
code is executed is not pre-determined when the code is written. The program can respond to the particular
circumstances in which it is run. Note that the program is still predictable in the sense that the same input
ought to produce the same output if it does not incorporate (truly) random numbers.

Example

Consider the guessing game high-low. We can let the computer generate a random number, and then write a
function that will tell us if our guess is high or low.

from random import *

def highlow(a, b):
if b < a:

print ’low’
elif b > a:

print ’high’
else

print ’correct’

a = int( random() * 1000 )
highlow(a, 500)
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Control flow can also be nested inside other control structures. For example, consider the case of trying to
find the maximum of three numbers. Two approaches we could take are as follows.

1. Test each possible ordering of the numbers

2. Pick two, find the larger value, then test it against the remaining value.

3. Take a guess and keep track of the current guess. Compare it against all other possibilities.

For case one, the code would be of the form if-elif-else. Each test could consist of checking one variable
against the other two.

def min1(a, b, c):
if a > b and a > c:

print a, ’ (’, b, ’ ’, c,’)’
elif b > a and b > c:

print b, ’ (’, a, ’ ’, c,’)’
else

print c, ’ (’, a, ’ ’, b,’)’

In the other case, one pair is tested first, followed by the other pair. The code consists of nested if state-
ments.

def min2(a, b, c):
if a > b:

if a > c:
print a, ’ (’, b, ’ ’, c,’)’

else:
print c, ’ (’, a, ’ ’, b,’)’

else:
if b > c:

print b, ’ (’, a, ’ ’, c,’)’
else:

print c, ’ (’, a, ’ ’, b,’)’

Version two can be thought of as a decision tree. Each decision only involves one test and discards some
fraction of the possible cases. Ideally, we want to discard as many cases as possible no matter what the
decision is.

To optimize a decision tree, what percent of the cases should be discarded at each step?

Now consider how many operations are executed for the two cases. In the first case, the function could get
lucky and finish after evaluating two cases (max is a). In the worst case (max is c) the algorithm evaluates
four conditions.

In the second case, the algorithm only evaluates two comparisons, no matter what. Therefore, the second
algorithm not only matches the best case of the first algorithm, but never does any worse. Decision trees are
a powerful method of control flow and let us efficiently find the appropriate course of action given a set of
inputs.

The third case approaches the problem as a sequential one. The first number becomes our guess at the max.
If there are no other numbers, we’re done. If there is a second number, we compare it against our current
guess at the max. If it’s bigger, replace our current guess with the new value, otherwise don’t change it.
Note that this algorithm scales to as many numbers as we might have.
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def min3(a, b, c):
max = a
if b > max:

max = b
if c > max:

max = c

print ’max value is ’, max

The third case does no more comparisons than the second and is easier to understand and code. It also
expands to more numbers easily. One problem, however, is that it doesn’t naturally keep track of which of
the numbers is the max, just the value of the maximum. How would we change it to keep track of which
variable is the maximum?

Example

Using an if-statement, it is possible to transform a symbol–the value of a variable–into something else. For
example, what if we assigned each standard turtle command a single letter symbol and used a single function
to execute them?

def turtleDo( cmd, value ):
if cmd == ’f’:

forward(value)
elif cmd == ’b’

backward(value)
elif cmd == ’r’

right(r)
elif cmd == ’l’

left(r)
else

print "The character ’"+cmd+"’ is not a valid symbol"

Then we could create a square using the following set of commands.

turtleDo(’f’, 50) # executes forward(50)
turtleDo(’r’, 90) # executes right(90)
turtleDo(’f’, 50) # executes forward(50)
turtleDo(’r’, 90) # executes right(90)
turtleDo(’f’, 50) # executes forward(50)
turtleDo(’r’, 90) # executes right(90)
turtleDo(’f’, 50) # executes forward(50)
turtleDo(’r’, 90) # executes right(90)

Consider what the above program does. It transforms turtle commands, which are python code, into data that
is all processed by a single function that gets called repeatedly. What can computers do with data?

Another way of thinking about it is that we’ve created a new abstraction for turtle commands that contains
a single function with two parameters. How difficult would it be to add new turtle functions like letting the
symbol ’s’ become a square?
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2.5 Sequences, Lists, and Arrays

When working with data, or information, we commonly encounter sequences of information. These might
be measurements of temperature taken once a day for a year. These might be sequences of letters, which we
generally call strings.

Any time we have a sequence of information, we probably want to do some kind of analysis, likely the same
kind of analysis to each element of the sequence. For example, we may want to print the string, which we
can think of as doing the same operation to each character. We may want to sum all of the temperatures
taken over a year in order to calculate an average value. Executing operations on sequences of information
is so common that every programming language has features to support it.

Visualizing a task as occurring on sequences of information is a useful aspect of computational thinking.
Any time you can describe a task as executing the same operation on each element of a sequence of data it
becomes easier to encode and automate.

2.5.1 Lists

Lists are a fundamental data type in Python. Conceptually, they are a sequence of pieces of information.
The sequence starts at location 0 and continues for as many pieces of information as are in the list. If there
are N items in a list, the last item has the index N-1. For example, if there are ten items in a list, the first
index is 0 and the last index is 9.

The syntax for writing out a list is a comma separated sequence of items, surrounded by brackets.

>>> listOfNumbers = [1, 2, 3, 4, 5]
>>> listOfStrings = [’ab’, ’cd’, ’de’]
>>> listOfMixture = [1, ’ab’, 2, ’bc’, 3.0]
>>> print listOfNumbers[0]
1
>>>print listOfStrings[1]
cd
>>>print listOfMixture[4]
3.0

To access any element of a list, we use an index notation. If you add a number, in square brackets, to the
end of a symbol that holds a list, Python will access the specified element of the list. Python lists are all
zero-indexed. Array indexes have the following rules.

• Indices must be integers (a[1.0] generates an error)

• The first element in a string is at index 0

• Indices must not try to access elements beyond the length of the string

• Positive indices from 0 to length-1 are valid and index the string from left to right.

• Negative indices from -1 to -length are valid and index the string from right to left.

All the elements of a list do not have to be the same type. Each location in a list can hold a different kind of
information, as shown above. You can modify any element of a list by using the bracket index notation on
the left hand side of an assignment. Lists are mutable, which means you can change what any location in a
list references.
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>>> example = [1, 2, 3, 4, 5]
>>> print example
[1, 2, 3, 4, 5]
>>> example[2] = 10
>>> print example
[1, 2, 10, 4, 5]
>>> print example
[1, 2, 10, 4, 0]

You can add items to the end of a list by using the append method of a list. A method is a function that is
attached to data type. Another way of thinking about it is that it is a function that modifies the variable to
which it is attached. The following example shows how to add several items to a list.

>>> grow = []
>>> print grow
[]
>>> grow.append( 10 )
>>> print grow
[10]
>>> grow.append( 20 )
>>> print grow
[10, 20]
>>> grow.append( 30 )
>>> print grow
[10, 20, 30]
>>> grow.append( ’hut, hut, hut’ )
>>> print grow
[10, 20, 30, ’hut, hut, hut’]

The symbol table representation of a list is important to understand in order to use them properly. A list is
an object, which means the data for the list is not stored in the symbol table along with its name and type.
Instead, the symbol table entry holds a reference to the list object. The same model holds for all mutable
objects. You can model the list object as a symbol table itself. That symbol table contains information about
the object, such as its length and the information it contains.

Consider the following four commands.

>>> squares = [1, 4, 9, 16]
>>> squares.append( 25 )
>>> squares.append( 36 )
>>> print squares
[1, 4, 9, 16, 25, 36]

The following are the global and list symbol tables after each operation.
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Global symbol table after the first assignment:
Symbol Type Value
squares list ref list1

Global symbol table after the first append:
Symbol Type Value
squares list ref list1

Global symbol table after the second append:
Symbol Type Value
squares list ref list1

squares symbol table after first assignment:
Symbol Type Value
length int 4
data ref ref data [1, 4, 9, 16]

squares symbol table after 2nd assignment:
Symbol Type Value
length int 5
data ref ref data [1, 4, 9, 16, 25]

squares symbol table after 3rd assignment:
Symbol Type Value
length int 6
data ref ref data [1, 4, 9, 16, 25, 36]

The symbol table model also tells us how we expect Python to behave if we try to assign one list to another.
The following is a simple example that the symbol table model properly explains.

>>> accessorA = [ ’a’, ’b’, ’c’ ]
>>> accessorB = accessorA
>>> print accessorA
[’a’, ’b’, ’c’]
>>> accessorB[1] = ’oops’
>>> print accessorA
[’a’, ’oops’, ’c’]

The first statement creates an entry in the global symbol table for accessorA. It also creates a list object
and puts a reference to that object in the entry for accessorA. The second statement creates a new entry
in the global symbol table for accessorB and copies the information in accessorA’s entry into accessorB’s
entry. It is important to understand that the information being copies is the reference to the list object, not
the list object itself. Therefore, when we use accessorB to index into the list object on the left side of an
assignment, it is the same list object referenced by accessorA. This is a condition called aliasing. It means
that two symbols refer to the same object in memory, and therefore, using one symbol to edit the object
causes the effects to appear when referencing the same object using another symbol.

The most important thing to remember is that when assigning one list to another, it does not make a new
copy of the data. The only way to copy the data is to write a loop that goes through the list and makes a
copy of each element, placing it into a new list.

One of the useful features of Python is that we can always discover the length of a list, or any sequence, by
using the len function on any variable that contains a sequence of information.

>>> values = [3, 2, 1]
>>> print len( values )
3
>>> values.append( 0 )
>>> print len(values)
4

In addition to numbers and strings, a list can also hold other lists, as in the example below.

>>> coords = []
>>> coords.append( [0, 0] )
>>> coords.append( [50, 100] )
>>> print coords
[[0, 0], [50, 100]]
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The first element in coords is the list [0, 0], and the second element in coords is the list [50, 100].
Imagine using a list of lists to hold the vertices of an arbitrary polygon. For example:

>>> coords = [ [0, 0], [100, 0], [75, 100], [50, 25] ]

How could we then use the coords list to draw the polygon?

for i in range( len( coords ) ):
pt = coords[i]
turtle.goto( pt[0], pt[1] )

turtle.goto( coords[0][0], coords[0][1] )

The last statement, which closes the polygon, uses a double index on the coords list. The first index
specifies which position in the coords list to access, and the second index specifies which position in the
inner list to index. Multi-dimensional lists are a useful way to organize information, especially when each
item in a list needs many pieces of information to describe it (e.g. position, color, line type, fill, etc.).

Lists also provide more sophisticated methods of access. In particular, it is possible to specify any subset of
a list using a range notation where the start index and end index are separated by a colon. The following are
a few examples. Note that if one side of the colon has no number, it means either ’from the start’ or ’to the
end’ of the list.

>>> a = [1, 2, 3, 4]
>>> print a[0:2]
[1, 2]
>>> print a[1:]
[2, 3, 4]
>>> print a[:-1]
[1, 2, 3]
>>> print a[3:4]
[4]

2.5.2 Strings as arrays

Strings are a collection of characters. In Python, strings can be delineated by either single or double
quotes.

• ’this is a string’

• "this is also a string"

If you use one type of quote marker to delineate the string, you can use the other type of quote marker as
part of the string.

’you can put "quotes" around a word’
"in one of ’two’ ways"

Python has to store strings in memory. Memory is like a long list of cubby-holes all the same size. Each
cubby can hold one byte of data. A byte is eight bits. A bit is a binary digit and can take on the value 1 or
0. Therefore, each byte can hold one of 256 values.

Each character in a string is typically represented as a byte of memory. Once upon a time in computer
history someone came up with a mapping from numbers to characters. The most common mapping is called
ASCII [American Standard Code for Information Interchange]. ASCII uses 8-bits, or one byte to represent
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each character. Given the need to support international character sets, a new standard called Unicode uses
two bytes for each character, permitting 65,536 different characters.

A string is simply a collection of characters that python has put in consecutive memory locations inside the
computer. The name of the string is associated with the location of the first character in the string. When
data is stored conceptually (or physically) as a sequence of elements we call that an array.

What if we want to look at a specific character in the string? We can use the same index notation we use for
lists or other sequences.

>>> a = ’abcd’
>>> a[0]
’a’
>>> a[1]
’b’
>>> a[2]
’c’
>>> a[3]
’d’
>>> a[4]
Traceback (most recent call last):

File "<stdin>", line 1, in ?
IndexError: string index out of range

Note what happens when we use an index that goes beyond the end of the array. Python generates an error
and tells us our index (4) is too big for this array. As with lists, we can always discover the number of
characters in a string using the len() function.

>>> a = ’lots of characters’
>>> len(a)
18

Unlike some languages, strings in Python are immutable. That means you can’t change the value of a
character in a string once it’s created. You can, however, build a completely new string and put the new
string into the old variable. What that means is that you cannot change a specific character in an existing
string. The following statement produces an error.

>>> a = ’a gypo’
>>> a[2] = ’t’
TypeError: ’str’ object does not support item assignment

The ability to index into a sequence of information is tied closely with our ability to iterate, such as using
for loops. If we can loop a certain number of times, then we can go through each element of a string, or
sequence. If we can look at each element of a string, then we can execute an action on each character.

In the following example, the code prints out each character in a string separately. The print statement is
executing the same process on each input, and the inputs are dependent upon the index variable.

astring = ’abcd’
for i in range( len(astring) ):

print astring[i]

It is also possible to do more complex operations based upon the values of the string. In the following code,
we have three drawing functions for creating a circle, a triangle, and a square at arbitrary locations. Using an
if-statement inside the for loop, the particular character in the string determines what shape to draw.
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Example: use a string to select which of a set of shapes to draw

import turtle

def triangle(x, y, size):
goto(x, y)
for i in range(3):

turtle.forward( size )
turtle.left( 120 )

def square(x, y, size):
goto(x, y)
for i in range(4):

turtle.forward(size)
turtle.left( 90 )

def circle(x, y, size):
goto(x, y)
turtle.circle( size )

shapestr = ’ttccss’

for i in range( len(shapestr) ):

x = random.randint(-300, 300)
y = random.randint(-300, 300)
size = random.randint( 10, 100)

if shapestr[i] == ’s’:
square( x, y, size)

elsif shapestr[i] == ’t’:
triangle( x, y, size)

else:
circle( x, y, size)

2.5.3 Tuples

A tuple is a third method in Python for storing sequences of information. Like lists, a tuple can hold a
variety of types of information, including lists and and other tuples. Once created, however, the tuple is
itself immutable. That means that the order of information in the tuple and any immutable values within
the tuple are fixed. Only immutable objects embedded in the tuple, like lists, are valid on the left side of an
assignment.

You can read from the elements of a tuple just like a list, and tuples can be multi-dimensional (tuples within
tuples). However, you cannot use an indexed element of a tuple on the left side of an expression.

Tuples are often used to hold information that will not change, such as color values, image data, or other
scientific measurements.
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2.6 Iteration

Repetition, or iteration of a series of operations is commonplace in programming. For many tasks, we can
define the solution as a series of identical operations on a sequence of things. With the ability to make
conditional statements, we can even do different operations on each member of a sequence. We’ve already
looked at the concept of definite loops, or loops for a fixed number of iterations, by using the range function.
The for statement, however, can do more than just definite loops.

2.6.1 for

The for loop provides a more convenient syntax and mechanism for iterating over an array or a list of
elements. We’ve already looked at simple examples of for loops that execute a certain number of times. The
formal syntax of a for loop is given below.

Syntax:

for <variable> in <sequence>:
<statements>

The loop variable can be any legal variable name in Python. The variable has scope within the enclosing
function or module (file) block, so it exists after the for loop is completed.

The sequence is the collection of things over which the loop should iterate. A sequence can be a list, string,
or tuple. The first time through the loop, the variable gets the value of the first item in the sequence. The
second time through the loop, the variables gets the value of the second item in the sequence, and so on,
until the loop processes all of the elements.

To loop over the elements of a string, we can do something like:

aString = ’hello’
for curChar in aString:

print curChar
< other stuff with the character curChar >

If you want the loop variable to take on a set of consecutive numbers, you can use the built-in range()
function.

range(<start>, <end>, <step)

• If you give the range function a single parameter, it generates a list that contains elements from 0 to
one less than the given number in increments of 1.

• If you give the range function two parameters, it produces a list starting at the first number and ending
at one less than the second number in increments of 1.

• If you give the range function three parameters, it produces a list starting at the first number, incre-
menting by step, and ending no less than step from the ending number.

Key concept: for loops work through a sequence of items

• The list can be a string, in which case it works through the elements of the string

• The list can be a list or tuple, which is are a linear sequence of objects

• The range() function is your friend

c©2010 Bruce A. Maxwell 32 December 8, 2010



CS151: Problem Solving and Programming Lecture Notes

Example: Use a for loop to iterate over the elements of a list and print out the value and type of each
element.

>>> def showlist(mylist):
... for item in mylist:
... print item, " : ", type(item)
...
>>> alist = [1, "45", 45, "thirty", 30.0]
>>> showlist(alist)
1 : <type ’int’>
45 : <type ’str’>
45 : <type ’int’>
thirty : <type ’str’>
30.0 : <type ’float’>

2.6.2 while

Often we can express repetition as occurring until something happens. One way to express that idea is to
say that a set of statements should repeat while a condition is true. Once the condition is false, the computer
should stop executing the statements.

• We need syntax to express the iteration

• We need an expression that evaluates to true or false

• The body of the iteration needs to do something that will eventually cause the loop to exit

while <expression>:
<statements>

Example:

while n > 0:
print n
n = n - 1

2.6.3 Common loop structures

Loops are the workhorse of programming. One goal of programming is to never, ever have to type a sequence
of numbers that follow a pattern. Life is too short.

Some commonly used loop patterns are the following.

• Interactive loops: these generally ask the user for some kind of input. The loop terminates when the
user provides the proper input. There are several forms of these kinds of loops.

– Menu loop: give the user a set of possible choices and use their input to guide the program

– Sentinal case 1: one of the possible inputs sets the quit flag

– Sentinal case 2: one of the possible choices exits the loop using a break
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• Simple linear for loops: one loop going over a sequence of elements

• Nested loops: one loop inside another, allows manipulation of multi-dimensional concepts

See examples from class on the course web site.

With for loops in python, it is important to remember that both strings and lists can be used as the foundation
of the for loop. For example, both of the following for loops does the same thing.

a = "abcdef"
for char in a:

print char

b = [’a’, ’b’, ’c’, ’d’, ’e’, ’f’]
for char in b:

print a

2.7 Review of program design

Now that you have written some programs, the process of program design may actually be meaningful. The
most important step, by far, is step number one. If you have a clear idea of what the critical aspects of
the program are, it makes it easier to design solutions and guarantee that you meet the requirements of the
problem.

Process:

1. Define the task using natural language (understand the problem)

2. Identify the inputs and outputs of the task

3. Recursively break down the problem into smaller steps

4. Organize the steps, noting the input and output requirements of each step

5. Identify what the individual functions should be, noting where in the steps there are similar input and
output requirements.

6. Generate some intermediate representation of the algorithm

• Pictures

• Flow chart

• Pseudo-code style comments

7. Write code

8. Verify and test the code

As you subdivide a problem, one of the things to keep in mind is that you can define the meaning of the
functions of a parameter. Make sure the parameters take on a meaning that is appropriate for what they need
to do and that makes it easy to write the function.
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3 Zelle Graphics objects

The Zelle graphics package is organized around the concept of objects. Objects are collections of informa-
tion and functions. Objects are defined by a what we call a class definition, which is simply how we specify
which information and which functions belong with an object. When we talk about object information, we
describe them as fields, rather than variables. When we talk about object functions, we describe them as
methods.

Objects were originally developed to facilitate a different type of design than that generally used with func-
tions.

Functions divide a problem into parts by looking at the actions required to achieve a solution. The keys to
subdividing a problem into functional parts are:

• Identifying the steps required by the solution and looking for duplication

• Identifying the information that needs to be passed around between functions

• Identifying the input/output characteristics of each function

• Dividing the problem sufficiently so that each function is easy to write

An object-oriented approach to design looks at the problem differently. Instead of breaking down the prob-
lem into a series of steps, the problem domain is divided by the objects, or ’nouns’ that represent parts of
the problem description. Both actions and data are then attributed to the critical objects.

• The objects for a particular problem represent the nouns

• The methods of the objects represent verbs in the problem description

• Adverbs and adjectives represent the data, or parameters required for the methods or objects.

3.1 Working with graphics objects

The basic objects in the Zelle graphics package are:

• GraphWin - a window

• Pixmap - a collection of pixels, usually from an image

• Point - a 2D point with (x, y) values

• Line - a line connecting two points

• Rectangle - an axis-oriented rectangle defined by two points

• Circle - a circle defined by a point and a radius

• Text - an object for drawing text in the screen

To create an object, use the name of the object as a function. In many cases, an object constructor will take
arguments that get stored inside the object when it is created.

pt = Point( 50, 50 )

In the above example, the variable pt gets a new Point object at location (50, 50).
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3.1.1 Object methods

Most objects have methods associated with them. A method is simply function that acts on the object. All
methods of an object have the object itself as the default first argument. When a method is called, the object
on which the method is called is automatically placed as the first argument, which means the programmer
does not have to.

Therefore, a method that takes no external arguments, will still have the default self argument.

3.1.2 Object assignment and copying

A significant difference between objects and the standard data types is what happens when you assign an
object to a different variable. Consider the two cases below:

Case 1: Case 2:

>>> goofy = 10
>>> pluto = goofy
>>> print goofy, pluto
10 10
>>> pluto = 20
>>> print goofy, pluto
10 20

>>> from graphics import *
>>> hu = Point(10, 10)
>>> lu = hu
>>> print hu.getX(), hu.getY(), lu.getX(), lu.getY()
10 10 10 10
>>> lu.move(20, 20)
>>> print hu.getX(), hu.getY(), lu.getX(), lu.getY()
30 30 30 30

What happened in the second case? Why did hu change when we moved lu?

• When an object is created, the constructor returns a reference to the object

• A reference is like an address: it’s the location of the object data, not the object itself

• When a basic data type is placed into a variable, the variable holds the data itself

• When an object is placed into a variable, the variable holds a reference to the object

So how do we make a copy of an object? The objects in the Zelle graphics library all possess a clone()
method that makes a copy of the object’s data and then returns a reference to the location of the new copy.
If we execute the same example as above, but use the clone method instead of a straight assignment, then
we get behavior that matches assignments with the basic data types.

>>> from graphics import *
>>> hu =Point(10, 10)
>>> lu = hu.clone()
>>> print hu.getX(), hu.getY(), lu.getX(), lu.getY()
10 10 10 10
>>> lu.move(20, 20)
>>> print hu.getX(), hu.getY(), lu.getX(), lu.getY()
10 10 30 30

So to make a real copy of an object use the clone method on the right side of the assignment, not just the
variable holding the reference to the object.
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Example: Creating and manipulating graphics objects

The following code shows how to import the graphics package and then create different types of objects.
Note that some objects take other objects (Points) as arguments. Each of the assignments creates a new
object of the specified type.

import graphics

win = graphics.GraphWin( ’title’, 400, 400 ) # creates a 400x400 window
ptA = graphics.Point( 50, 50 ) # creates a point at (50, 50)
ptB = graphics.Point( 100, 50 ) # creates a point at (100, 50)
lineA = graphics.Line( ptA, ptB ) # creates a line between A and B
circA = graphics.Circle( ptA, 30 ) # creates a circle at ptA with radius 30

Lists can hold any type of information, including object references. Therefore, we can easily put all of the
objects created by the code above into a list.

scene = [ ptA, ptB, lineA, circA ]

Finally, since all of the graphics objects support a specific set of methods–e.g. draw, undraw, move–we can
loop over the list to manipulate all of the objects in the same way.

# the following draws all of the elements into the given window
for element in scene:

element.draw( win )

# the following moves all the items in the list by
# 20 in x (right) and 40 in y (down)
for element in scene:

element.move( 20, 40 )

We can also duplicate the scene by cloning all of the objects and putting them into a new list. Since cloning
creates a copy of the object, we can move the duplicate without modifying the original objects.

duplicate = []
for element in scene:

duplicate.append( element.clone() )

for element in duplicate:
element.move( -60, -10 )
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3.2 Designing a Scene

Problem: design an animated scene

1. Define the task

2. Identify the inputs and outputs at a global level

3. Recursively break the problem into smaller steps

4. Identify individual functions, noting steps with similar inputs and outputs

5. Generate intermediate representations of the algorithm

6. Write code

7. Verify and test the code

Note that steps 3-7 repeat and that verifying and testing code should be done continuously during the process
of development.

Let’s pick a simple animated scene of a set of things moving around a scene (e.g. birds flying). Now we
have to more carefully define what we mean by an animated scene of objects.

• The program should create a graphics window.

• The program needs to generate an initial scene consisting of graphical objects.

• The program needs to update the appearance/location of the objects on a regular basis over time.

The output of our program is defined by the task: generate a scene with one or more objects that changes
over time. What are the inputs to our program? What are the things we need to define before the program
begins?

• How many objects (e.g. birds) do we want to create?

• How many times do we want to update the animation (number of frames)?

• How much delay do we want between frames?

• Other parameters that modify the appearance of objects in the scene (e.g. scale)?

Overall, the task has two components to it. First, we have to create the initial scene and all of the objects
within it. If we want to update the scene, we need to keep references to the objects we want to update.

Second, we need to loop over the number of frames and update the scene for each frame.

At this point in the design process we can begin to write our program using top-down design and focusing
on correctly handling the inputs. The following shows the top level executable function that correctly han-
dles all of the inputs and has placeholders (print statements) representing the calls to create the scene and
update it. We can use this to test that it handles the inputs correctly and that the overall control flow works
properly.

The program also introduces the concept of the try/except statement. Python provides this statement to
enable the programmer to catch errors that occur when, for example, Python is unable to convert a string to
an integer or a floating point number. If an error occurs within the code inside the try block, then control
immediately moves to the first statement in the except block. The except block does not execute if no errors
occur within the try block.
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# Bruce Maxwell
# Fall 2010
#
# Design example for an animated scene
#

import graphics
import sys
import time

def main( args ):

# test if there are enough arguments
if len( args ) < 4:

print ’Usage: ’ + args[0] + ’ <Num birds> <Num Frames> <Delay>’
exit()

# try to convert the arguments to proper types
try:

numBirds = int( args[1] )
except:

numBirds = 5
print ’Invalid number of birds argument, continuing with ’ + str(numBirds)

try:
numFrames = int( args[2] )

except:
numFrames = 10
print ’Invalid number of frames argument, continuing with ’ + str(numFrames)

try:
delay = float( args[3] )

except:
delay = 1.0

print ’Invalid delay time, continuing with ’ + str( delay )

print ’Using: ’, numBirds, numFrames, delay

# create the scene
print ’creating scene’

# for the number of frames
for frame in range( numFrames ):

# delay
time.sleep( delay )
# update the scene
print ’updating scene, frame’, frame

if __name__ == "__main__":
main( sys.argv )

c©2010 Bruce A. Maxwell 39 December 8, 2010



CS151: Problem Solving and Programming Lecture Notes

4 Grammars and L-Systems

As computer scientists, one of the things we do is think about how to model systems in the real world. One
system of interest is language. Written language is defined by attributes like characters (symbols), words
(identifiers), grammar (syntax), and semantics. Computer languages have the same attributes, only simpler
and more well-defined than most natural languages.

Once we have defined the symbols of a language and how to generate words, or identifiers, the syntax of a
language is defined by its grammar. A grammar is defined as follows.

• An alphabet, or set of symbols that encompass all of the symbols in the language. Some of these
symbols are Terminals, or represent actual written characters, while some symbols are Non-terminals
that represent conceptual elements of the language (e.g. nouns, verbs, phrases).

• A start symbol, from which all valid strings of the language are derived.

• A set of rules that define the relationship between symbols.

Noam Chomsky defined a series of hierarchies of grammars that encompass very simple to very complex
languages.

• Regular grammars: rules can have at most one non-terminal symbol on the right side.

• Context-free grammars: rules can have only one symbol on the left side, which means rule application
is independent of context.

• Context-sensitive grammars: rules can have multiple symbols on the left side, which means context
can affect which rule is applied. A rule cannot map to a smaller set of symbols.

• Unrestricted grammars: there are no restrictions on the form of the rules.

Grammars are useful for many things, including parsing and compiling programs correctly and efficiently.
Chomsky’s grammars are used by taking one rule at a time and applying it to the current string, either in a
generative sense (creating sentences) or in a deconstructive sense (diagramming sentences).

It turns out that grammars are also useful for modeling things in nature. Astrid Lindemayer, a biologist,
developed a different type of grammar hierarchy that uses a different mode of rule application. L-systems
are primarily generative systems that build strings, or sentences, in a language. In L-system grammars, all
of the rules apply to all of the symbols simultaneously in order to convert an input string into an output
string.

Consider, for example, the development of a bacteria. It may go through a sequence of grow and divide
processes over time. We can model this process using a simple L-system.

• Alphabet: A, B

• Start string: A

• Rules: A→ BB ; B → A
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Now consider the sequence of strings over several generations. Note how the system displays the exponential
growth of cell division.

• A

• BB

• AA

• BBBB

• AAAA

• BBBBBBB

• AAAAAAA

Deterministic, context free L-systems, called DOL-systems, are the simplest form of L-systems.

• Each symbol has a single replacement rule (deterministic)

• Adjacent symbols do not affect what rules apply to a given symbol (context free)

• All rules are applied simultaneously to the base string

Here is an example of a simple DOL system.

• Base string: F

• Symbol: F

• Rule: F-FF

F
F-FF
F-FF-F-FFF-FF
F-FF-F-FFF-FF-F-FF-F-FFF-FFF-FF-F-FFF-FF

The application of the rule occurs simultaneously and in parallel for all instances of the symbol in the base
string. When the replacement is complete, the resulting string becomes the new base string and the process
can repeat.

What happens when we give a graphical meaning to the characters in the string?

• Meaning: F is go forward by distance δ (e.g. 5)

• Meaning: + is go left by angle θ = 60◦

• Meaning: - is go right by angle θ = 60◦

To interpret the string, we loop over each character in the string and execute the action indicated by the
character.

The Koch snowflake is another graphical example with an L-system interpretation.

• Base string: F–F–F–

• Symbol: F

• Rule: F+F–F+F
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In the Koch snowflake, we take each linear edge of the current shape ’F’ and replace it with four edges
where two of the edges poke out as a triangle ’F+F–F+F’. In just two iterations, the original string quickly
grows to a complex shape.
F--F--F--
F+F--F+F--F+F--F+F--F+F--F+F--
F+F--F+F+F+F--F+F--F+F--F+F+F+F--F+F--F+F--F+F+F+F--F+F--F+F--F+F+F+F--F+F--F+F--F+F+F+F--F+F--F+F--F+F+F+F--F+F--

4.1 Interpreter

An interpreter is a program that takes information in one form and converts it to information in another
form. In some cases, the new form of the information may be actions taken by the computer. Executing
an interpreted programming language is one example (e.g. Python). Creating graphical output is another
example (e.g Postscript on a printer).

The key concept in writing an interpreter is that the transformation of information from one form to another
is completely defined by the programmer designing the interpreter. If the programmer wants the character
F to draw a flock of birds, then the meaning of ’F’ as an input to the interpreter is a flock of birds. If the
programmer wants the character F to draw a circle, then the meaning of ’F’ as an input to the interpreter is
a circle.

In the case of context-free grammars, the interpreter need to look only at the current input–in the case of
L-systems a single character–in order to determine what to do. Therefore, the interpreter that converts an
L-system output string into turtle graphics can loop over the string one character at a time and use an if
statement to specify the set of actions for each character.

4.1.1 Branching L-systems

When modeling a biological system, it is not always possible to describe a shape as a single, linear sequence
of forward motions and turns. Consider a tree, for example, which may branch out in many directions from
a single location.

• Any single branch may have two or more child branches connected to it..

• The child branches may have their own child branches.

• We want to avoid re-tracing our steps, whenever possible.

In order to avoid backtracking, we have to give our interpreter a memory. What if we gave our interpreter
the ability to remember something very simple, like the current turtle position and heading? Think about
how this relates to a tree branch.

• Start at the trunk and go to the first branching

• Remember the current turtle position

• Trace out the right branch

• When finished with the right branch, restore the turtle position

• Keep parsing the string
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One issue that comes up is that if the right branch has a branch, then we need to remember another turtle
position. If we can remember only one position, we can recover from only one branching event at a time. If
we can remember many branches, then we can have a complex tree.

How do we know what turtle position to restore when we finish drawing a branch? It turns out we always
want to restore the turtle to the last position we saved. So we want a data structure with the following
properties.

• We can add things to the data structure

• The data structure remembers the order in which we added the elements

• When we take something from the data structure it is always the last thing we put on

What is a data structure we could use to store a sequence of turtle positions and headings that would have
these properties?

• We can append something to the end of a list: a = a + [1]

• We can retrieve something from the end of a list: value = a[-1]

• We can remove something from the end of the list: a = a[:-1]

In real life, what does this data structure behave like?

• A stack of plates or trays

• We push clean plates on top

• We pop the top plate off the stack to use

The list data structure supports both of the two required operations (push and pop). The pop method com-
bines removing the last element and returning it in a single operation.

• a.append(value)

• value = a.pop()

So how would use this idea in our interpreter?

• Define a character for pushing the current state into memory

• Define a character for popping and restoring the turtle state

• The L-system characters used for store and restore are the left and right bracket: ’[’, ’]’

When the interpreter begins parsing a string, it first creates a variable for the stack and initializes it to the
empty list.

• When the interpreter finds a left bracket character, it appends the turtle’s position and heading to the
end of the list.

• When the interpreter finds a right bracket character, it pops the turtle heading and position from the
end of the list and resets the turtle’s position and heading.
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Example: Branching L-system

An example of a simple L-system with branching is as follows:

Base: ffF
Symbol: F
Rule: ff[+F][-F]
Iterations: 3
Angle: 30

The first three strings and their shapes:

ffff[+F][-F]
ffff[+ff[+F][-F]][-ff[+F][-F]]
ffff[+ff[+ff[+F][-F]][-ff[+F][-F]]][-ff[+ff[+F][-F]][-ff[+F][-F]]]

Consider tracing out the turtle’s path for the figure on the right using the labels shown.

Step Stack
[ A
[ A B
[ A B C
] A B
[ A B C
] A B
] A

Step Stack
[ A B
[ A B D
] A B
[ A B D
] A B
] A
] null

Step Stack
[ A
[ A E
[ A E F
] A E
[ A E F
] A E
] A

Step Stack
[ A E
[ A E G
] A E
[ A E G
] A E
] A
] null

In the turtle package, the turtle’s position is provided by the position() function, which returns a 2-
element list containing the x and y location of the turtle. The turtle’s heading is provided by the heading()
function, which returns the orientation of the turtle in the range [0, 360).
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5 Files

Reading and writing from files is a useful capability on a computer because it permits us to store data
indefinitely and pass it between different applications or programs. Files are sequences of data stored on a
storage medium of some time. The simplest type of file is a text file, which is a sequence of characters. In
addition to the usual alphanumeric and punctuation characters, some of the characters in a text file may be
control characters such as a newline (’\n’)or tab (’\t’). It’s useful to think of text files as strings separated
by newlines.

To access a file, we just need to know its name and where it is in the file tree. Just like we can navigate
through the file tree of our computer using the terminal, we can use the same method of specifying paths in
Python. The directory from which you run your program is also the working directory inside the program.
A program can access any files in the working directory by using just their filename. All other files either
need to be specified relative to the file tree root (/) or relative to the current working directory.

There is a built-in data type called file that lets us open, read, write, and close files. The file data type is a
class. To create a new file object, we use the name of the class, which is file. In addition to the filename,
we need to tell the file class whether the program is going to read the file or write to the file. The following
two examples show both types of usage patterns. Note that it is important to close a file, especially after
writing content to a file. Otherwise, the operating system may not write the file data to the disk. Closing a
file forces the computer to flush all information for a file to the disk.

# write to a file
fp = file( ’myfilename’, ’w’ )
fp.write( ’writing a string to the file\n’ )
fp.close()

# read all of the contents of a file
fp = file( ’myfilename’, ’r’ )
text = fp.read()
print ’The contents of the file are:’
print text
fp.close()

When a program opens a file for writing, the computer creates a new file–even if an old file of the same
name exists–and writes the new data to that file. Therefore, any contents in the old file are lost.

When a program opens a file for reading, the file must exist or Python will throw an exception. A common
coding pattern when opening files is to use the try / except control structure to check that the file
opens correctly.

# try opening the file
try:

fp = file( ’myfilename’, ’r’ )
except:

print ’Unable to open file ’, ’myfilename’
exit()

# read the file
text = fp.read()
print ’The contents of the file are:’
print text
fp.close()
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When reading a file, there are three variations on the read method from which to choose.

• read(): reads the rest of the file and returns it as a single string

• readline(): reads from the file up to, and including, the next newline character and returns the string

• readlines(): reads each line from the file and returns a list with each line as an entry in the list

Note that the first and last functions could return very large objects.

Python also has a number of useful tools for parsing text file. These include both file class method and string
class methods.

Consider the task of reading a document and counting the number of times the word ‘the’ appears. The
algorithm is as follows.

Set a counter variable to 0
Open the file
Read all of the lines of the file and store them in a list
Close the file
For each line of the file
– Split the line into words and store the words in a list
– For each word in the list
—- If the word is ’the’,
—— increment the counter variable
Print (or return) the counter variable

counter = 0
fp = file( filename, ’r’)
lines = fp.readlines()
fp.close()
for line in lines:

words = line.split()
for word in words:

if word == ’the’:
counter += 1

print counter

Executing the code on the right properly counts the number of times the string ‘the’ appears in the file.

As a second example, consider the following L-system information, stored as a file using the following
format.

base F--F--F
rule F F+F--F+F

Using this format, the first string on each line tells us what piece of L-system information is stored on that
line. The remaining strings on the line have specific meanings given the first string. The file class gives us
the ability to read a file one line at a time, or to read all of the lines at once, storing each individual line as
the elements of a list.

oneLine = fp.readline()

allLines = fp.readlines()

In the first case, the file returns a single line of the program, and the variable oneLine receives a single string.
In the second case, the file returns a list of all of the lines of the file, so the variable allLines receives a list of
strings. Once we have a line of text, stored as a string, we can use the string methods to parse the line into
words using the split method.

words = oneLine.split()

Then the program can examine the words one at a time, using appropriate control structures to respond to
the contents of the file.
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For an L-system file such as the one given above, the algorithm for parsing the file is given below.

1. Open a file

2. Read all of the lines in a file

3. Close the file

4. Initialize an empty L-system, which will be [ ’’, [] ]

5. For each line of the file

(a) Split the line on spaces and store the word list

(b) If the first word is ’base’

• set the base string of the L-system

(c) if the first word is ’rule’

• add the rule to the L-system

6. Return the new L-system

The code to implement the algorithm is given below. This functions readFromFile, createLsystem, setBase
and setRule are part of project 7.

def readFromFile( filename):

# open, read, and close the file
fp = file( filename, ’r’ )
lines = fp.readlines()
fp.close()

# create a new empty lsystem
lsys = createLsystem()

# parse the lines of the file
for line in lines:

words = line.split()
if words[0] == ’base’:

setBase( lsys, words[1] )
elif words[0] == ’rule’:

addRule( lsys, [ words[1], words[2] ] )

# return the lsystem
return lsys
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6 Classes

A class is a language structure that allows us to define our own objects. An object is a data structure that
contains both information (fields) and functions (methods). An object has its own symbol table, just like a
module (an imported python file) or a function. The object’s symbol table holds all of the information about
the fields and methods it contains.

The parts of a class include the following.

• Class name, so that a programmer can create objects of the new type

• Class constructor that makes the object

• Class data that holds the relevant information about the object

• Class methods that let us manipulate the object and the object’s data

• A syntax to organize it all

The syntax of a class is as follows.

Class definition:

class <class name>:

def __init__(self, <other arguments>):
<constructor code>

def <member function name>(self, <other arguments>):
<member function code>

The key differences between methods and regular functions are that methods are A) defined inside a class
block and B) the first argument to a class method is always the variable self. The self variable is a
reference to the object data to which the method should be applied. It is, in effect, a reference to the object’s
symbol table. That means the function has access to all of the fields and methods defined for that object. In
all other ways, methods act just like regular functions. They have their own symbol table, they can have any
number of parameters, and variables defined inside a method do not have scope outside of the method.

The class definition itself also creates a symbol table in Python associated with the class name. When we
create a new object, which we define as an instance of a class, Python copies the contents of the class symbol
table–which are usually method references–to the object’s symbol table. That gives the object access to the
class methods.

To create a new instance of an object, use the class symbol as a function call and assign its result to a
variable. To create a new Point object from the Zelle graphics library, for example, use the syntax below,
which creates a Point object and puts a reference to it in the variable pt.

pt = graphics.Point( 100, 100 )

The init function is a special function that Python calls when the user creates an instance of an ob-
ject. For example, in the Zelle graphics package, when you call the function GraphWin(), Python calls the
init function for the GraphWin class with whatever parameters you pass to the GraphWin() call.

All function and method definitions can specify default values for arguments if the arguments are not given.
Default values are commonly used in the constructor for a class so that an appropriate object is created even
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if the programmer provides no initial arguments to the object. If an object must have certain information in
order to initialize itself, then there should not be any default values for those parameters.

The example below shows several aspects and features of classes. First, the init function adds two
fields to the object: name and year. It uses default values in case the calling program does not pass in initial
values. Second, it provides methods for getting and setting the values of the name and year fields. These
functions are called accessors. Third, it defines a method str that is called by Python whenever the
object is cast to a string using the str() function. This occurs, for example, whenever the object appears
as an argument to print.

Example: A Student Record

A common example used to teach classes and objects is a database entry. Databases are an ideal application
for object-oriented design since they consist of many separate items we want to create, access, modify, and
delete. The following is a simple Student object that holds the student’s name and year.

class Student:
# initialize the object and create its two fields
def __init__(self, name=’’, year=-1):

self.name = name
self.year = year

# accessors for the name and year fields
def setName(self, name):

self.name = name

def setYear(self, year):
self.year = year

def getName(self):
return self.name

def getYear(self):
return self.year

# utility function
def inRange(self, startYear, endYear):

return startYear <= self.year and self.year <= endYear

# called whenever the str() function is used with a Student
def __str__(self):

return ’ %d %s’ % (self.year, self.name)

After Python scans through the above code, the contents of the Student symbol table include function ref-
erences to each of the methods: init , setName, setYear, getName, getYear, inRange, and str . Code
inside the methods does not have any impact on the class symbol table.

Note the use of methods to get and set object fields. This is a practice called encapsulation, which is
defined as hiding the details of implementation from a programmer using the class. Encapsulation is one of
the main principles of object-oriented design, and it enables classes to change their implementations without
impacting programs that use those classes.
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To see how we might use the student class, consider the following test function, which would be appropri-
ately placed in the same file as the Student class to test the class functionality.

# unit test function
def test():

students = []
students.append( Student( ’Andrew’, 2011 ) )
students.append( Student( ’Mary’, 2013 ) )
students.append( Student( ’Katherine’, 2012 ) )
students.append( Student( ’Martha’, 2012 ) )

print ’All students’
for s in students:

print s
print ’\n2012 students’
for s in students:

if s.inRange(2012, 2012):
print s

if __name__ == "__main__":
test()

Each time the code calls the Student function, it creates a new Student object, copies the Student symbol
table to the object’s symbol table and then calls the init method. The init method then adds two
new fields to the object’s symbol table–name and year–and copies the information from the name and year
parameters, which exist in the init method’s symbol table. While the init method’s symbol table
disappears once the method completes, the object’s symbol table remains in existence as long as we have a
reference to it stored in some variable.
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Example: A Bird Class

The following is an implementation of the same bird concept we implemented using lists. By using a class,
we can make the Bird object act just like any other graphics object by writing methods for draw, undraw,
move, and other graphics modifiers.

# Example of a class for generating a flying Bird
import graphics
import math
import random

class Bird:
def __init__(self, x, y, scale):

# create a bird from graphics objects
ptA = graphics.Point( x, y )
ptB = graphics.Point( x - 30*scale, y - 10*scale )
ptC = graphics.Point( x + 30*scale, y - 10*scale )
ptD = graphics.Point( x - math.sqrt( 30*30 + 10*10)*scale, y )
ptE = graphics.Point( x + math.sqrt( 30*30 + 10*10)*scale, y )
ptF = graphics.Point( x - 30*scale, y + 10*scale )
ptG = graphics.Point( x + 30*scale, y + 10*scale )

# wings in 4 positions
l1 = graphics.Line( ptA, ptB )
l2 = graphics.Line( ptA, ptC )
l3 = graphics.Line( ptA, ptD )
l4 = graphics.Line( ptA, ptE )
l5 = graphics.Line( ptA, ptF )
l6 = graphics.Line( ptA, ptG )
l7 = graphics.Line( ptA, ptD )
l8 = graphics.Line( ptA, ptE )

# indicate that no lines are currently drawn
self.position = -1

# store the graphics objects
self.things = [l1, l2, l3, l4, l5, l6, l7, l8]

# draw the object into the given window
def draw(self, win, pos=0):

if pos < 0:
self.position = 0

else:
self.position = pos % 4

self.things[self.position*2].draw(win)
self.things[self.position*2+1].draw(win)

# move all of the graphics items
def move(self, dx, dy):

for item in self.things:
item.move(dx, dy)
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# undraw any currently drawn graphics items
def undraw(self):

if self.position >= 0:
self.things[self.position*2].undraw()
self.things[self.position*2+1].undraw()
self.position = -1

# set the fill color
def setFill(self, color):

for item in self.things:
item.setFill( color )

# set the outline color
def setOutline( self, color):

for item in self.things:
item.setOutline( color )

# set the width of the lines
def setWidth( self, width ):

for item in self.things:
item.setWidth( width )

# animate the bird
def animate( self, win ):

if self.position >= 0:
self.things[self.position*2].undraw()
self.things[self.position*2+1].undraw()

self.position = (self.position + 1) % 4

self.things[self.position*2].draw(win)
self.things[self.position*2+1].draw(win)

def test():
win = graphics.GraphWin(’birds’, 400, 400)

bird = Bird( 200, 200, 2)
bird.draw(win)
bird.setOutline( ’blue’ )
bird.setWidth( 3 )

for i in range(30):
bird.move( random.randint( -5, 5 ), random.randint(-5, 5) )
bird.animate(win)

win.getMouse()
win.close()

if __name__ == "__main__":
test()
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In the example above, there are a number of characteristics of classes that make programming easier than
using our prior list representation

• We can store information in named fields instead of in specific positions in a list.

• Information stored in a field of an object is available in all methods of the class using the self reference.

• Since information is stored with each object, each object can have unique properties.

• Integrating the Bird object with other graphics objects is trivial: they all support the same methods.

6.1 Multiple Rule L-Systems

Thus far, we have used deterministic context-free L-systems, called DOL-systems, with a single rule. L-
systems with one rule are limited in the complexity of objects they can represent. Multi-rule DOL-systems
require a slightly more flexible replacement algorithm.

While our existing list representation of L-systems can easily handle multiple rules, moving to a class
representation has several benefits. First, we can use named fields to hold the L-system data. Second, we can
connect the appropriate functions to L-system objects, simplifying the parameter lists and the code.

Recall that deterministic, context free L-systems are defined by the following rules.

• Each symbol has a single replacement rule (deterministic)

• If a symbol has no explicit rule, then it has the identity rule S ⇒ S

• Adjacent symbols do not affect what rules apply to a given symbol (context free)

• All rules are applied simultaneously to the base string

Example: Multiple rule L-system

a→ ab
b→ c
c→ a

Iteration String
0 a
1 ab
2 abc
3 abca
4 abcaab
5 abcaababc
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In order to implement multiple rules, we need to simulate simultaneous expansion of each symbol by its
replacement rule. Since we are implementing the concept on a serial machine, however, we have to keep
track of what symbols have been replaced and which have not.

• Replacing all instances of one symbol and then all instances of another symbol will not work.

• The new string must be built separately from the original string.

Since each symbol in a DOL-system is independent in its rule selection and replacement, we can process
the base string from left to right. Each symbol in the base string is a key for looking up its replacement rule.
We can concatenate the replacement strings into a new list.

Algorithm for a single iteration of multi-rule replacement:

1. Initialize the output string to the empty string.

2. For each character C in the base string

(a) Set a flag variable to False

(b) Loop through the list of rules

• If the symbol for the rule is C, then append the rule to the output string and break and set
the flag variable to True

(c) If there is no rule for C (flag is False), then append C onto the output string (identity rule)

If we implement the above algorithm using a list and an inner loop, then we need to keep track of whether
the program finds a rule for the symbol. A simple flag variable that gets set to false prior to looping through
the list of rules is sufficient. If the program finds a rule, it sets the flag variable to True.

What is the computational efficiency of this algorithm?

• How many times does the whole thing iterate?

• How many times does the outer loop iterate?

• How many times does the inner loop iterate?

Since nested for loops multiply, the expression for the number of iterations is:

Instructions ≈ Iterations× String Length× Rules (2)

This kind of approximate calculation is important for designing efficient programs. If we know all of the
parameters to a program that affect the number of instructions that will be executed, we can describe the
computational complexity as some formula based on those numbers.

• The exact number of instructions isn’t as important

• Knowing how the length of the computation will change for different inputs is important

• There is some factor K that multiplies the above expression to tell us the exact number of instructions

• The factor K doesn’t change the complexity of the expression
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An Example L-system Class

The class below is an example of how we might represent an L-system using a class structure instead of a
list. Note that we can use named fields to hold the various pieces of information instead of locations in a list.
Likewise, we can override the str method and have the class create a nicely formatted representation
of the L-system information when the user prints an L-system object.

class Lsystem:
def __init__(self):

self.base = ’’
self.rules = []

# sets the base string
def setBase( self, base ):

self.base = base

# copies a new rule into the rules list
def setRule( self, rule ):

newrule = []
for item in rule:

newrule.append( item )
self.rules.append( newrule )

# reads the L-system data from a file
def read( self, filename ):

# implementation left for lab

# builds a string given the L-system and number of iterations
def buildString( self, iterations ):

# implementation left for lab

# override the __str__ method to enable nice output
def __str__(self):

s = ’base: ’ + self.base + ’ rules: ’ + str( self.rules )
return s

6.2 Inheritance

The interpreter we’ve developed for converting L-system strings into graphics is a general purpose drawing
machine. We can pass any string consisting of valid characters into the interpreter, along with a distance and
angle, and have the interpreter draw it. Consider, for example, the following strings and their distance and
angle information.

• Triangle: ( string: F+F+F+, distance: 50, angle: 120 )

• Square: ( string: F+F+F+F+, distance: 50, angle: 90 )

• Star: ( string: [F]+[F]+[F]+[F]+[F]+[F]+[F]+[F]+, distance: 20, angle: 45 )
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We could write a class to support each of these objects and use the interpreter to draw them. Consider the
following three classes.

class Triangle:

def __init__(self):
self.string = ’F+F+F+’
self.angle = 120
self.distance = 50

def draw(self, x0, y0, scale):
interpreter.goto( x0, y0 )
interpreter.drawString( self.string, self.distance * scale, self.angle )

class Square:

def __init__(self):
self.string = ’F+F+F+F+’
self.angle = 90
self.distance = 50

def draw(self, x0, y0, scale):
interpreter.goto( x0, y0 )
interpreter.drawString( self.string, self.distance * scale, self.angle )

class Star:

def __init__(self):
self.string = ’[F]+[F]+[F]+[F]+[F]+[F]+[F]+[F]+’
self.angle = 45
self.distance = 30

def draw(self, x0, y0, scale):
interpreter.goto( x0, y0 )
interpreter.drawString( self.string, self.distance * scale, self.angle )

Note that the fields are all the same and the draw functions are all the same. In fact, the init functions
are all the same except for the hard-coded values on the right side of each assignment. There is duplicate
code all over the place, which is extremely poor programming practice, encourages errors, and is just a waste
of time and effort.

Classes enable us to avoid duplicating code shared among similar classes by enabling a design mechanism
called inheritance. Think of inheritance as enabling a tree structure of programming. Put fields and methods
shared among a group of classes into a single parent class. Then have each child class inherit the methods
and fields of the parent. The child class code needs to include only any class-specific or additional methods
and fields. The following set of four classes has exactly the same functionality as the example above, but is
much more compact and contains no duplicate code.

Note the syntax of inheritance. When defining the Triangle class, we use the statement

class Triangle(Shape):

which says to define a class Triangle with the parent Shape. In terms of symbol tables, when Python
builds the Triangle symbol table, it copies the contents of the Shape class symbol table–its methods–to the
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Triangle class symbol table. Then, when we create an object of type Triangle, Python copies the contents of
the Triangle class symbol table to the object’s symbol table.

Any methods defined in the child class override the parent method. Therefore, the init method in the
Triangle class replaces the reference to the Shape init method in the Triangle class symbol table.

class Shape:

def __init__(self, string, angle, distance):
self.string = string
self.angle = angle
self.distance = distance

def draw(self, x0, y0, scale):
interpreter.goto( x0, y0 )
interpreter.drawString( self.string, self.distance * scale, self.angle )

# Triangle class inherits Shape
class Triangle(Shape):

def __init__(self):
Shape.__init__(self, ’F+F+F+’, 120, 50 )

# Square class inherits Shape
class Square(Shape):

def __init__(self):
Shape.__init__(self, ’F+F+F+F+’, 90, 50 )

# Star class inherits Shape
class Star(Shape):

def __init__(self):
Shape.__init__(self, ’[F]+[F]+[F]+[F]+[F]+[F]+[F]+[F]+’, 45, 30 )

What should be clear from the Shape class examples is that inheritance can save us a lot of time and effort
coding. Furthermore, it reduces the chance of future errors by eliminating duplicate code. Finally, if we want
to modify the implementation of the draw function to incorporate new capabilities or parameters, making a
single change will change the functionality for all classes, as shown in the following example.

def draw(self, x0, y0, scale, color = (0, 0, 0) ):
interpreter.goto( x0, y0 )
interpreter.color( color )
interpreter.drawString( self.string, self.distance * scale, self.angle )

Our symbol table model of Python’s internal state enables us to describe inheritance in terms of copying,
or overwriting entries in a symbol table. The Shape symbol table contains an entry for each method. The
definition of the Triangle symbol table tells Python to copy the Shape symbol table to the Triangle symbol
table. Then the def statement within the Triangle class tells Python to overwrite the init entry of the
Triangle symbol table. When some code creates a new Triangle object

t = Triangle()

Python copies the Triangle class symbol table entries–including the overwritten init entry–into the new
object’s symbol table. The fields created by the Shape init go into the object’s symbol table.

c©2010 Bruce A. Maxwell 57 December 8, 2010



CS151: Problem Solving and Programming Lecture Notes

6.3 Design Using Classes

Classes enable and support four principles of object-oriented programming that can be beneficial in design-
ing large systems.

• Modularity: making functional units that can be re-used in many contexts

• Encapsulation: isolating implementation from functionality

• Inheritance: capturing commonality in a base class that can be extended to handle special cases

• Polymorphism: the ability to treat different objects the same way

Modularity is well-supported by functions, and both classes and the use of methods in classes support
modularity in class design. Modularity is universal across languages and modes of programming.

Encapsulation, however, is not supported by functions, because all data for a function must either be hard
coded into the function or passed in as an argument. Therefore, the programmer using a function must
know the form of the data required by the function. Object-oriented design using classes supports the hiding
of implementation details, such as how the data required by a method is stored. A programmer using a
class does not need to keep track of the data it uses, and the data stored in an object does not need to be
maintained or passed between functions by the programmer. In many object-oriented languages permit the
class designer to specify certain methods and fields as private, which means they can be accessed only in
code within the class.

Inheritance is specific to an object-oriented design approach. Inheritance enables child classes to use the
methods and fields defined in the parent class. It helps avoid code duplication, assists modularity and
encapsulation, and in languages with static typing it enables polymorphism.

Polymorphism is well supported in dynamically typed languages as any variable can hold any data type.
However, in typed languages (e.g Java or C++) polymorphism is enabled by classes and inheritance. Vari-
ables typed as a parent class can hold and make use of objects typed as a child class. In Python, polymor-
phism is ubiquitous. If a set of classes support a common set of methods, we can write algorithms based on
those common methods.
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7 Dictionaries

What is a dictionary? It is a collection of items arranged in alphabetical order.

• Each item has a unique location.

• The item has a key that indicates its location in the collection.

Why do we use dictionaries?

• We need to keep track of a large number of items.

• We need to be able to quickly locate each item.

• We need to keep information only about specific items, not every possible item (e.g. word).

The idea of mapping a key–a word–to a value–a definition–is both common and useful. Python provides
a data structure with that capability called a dictionary. A dictionary acts in many ways like a list or a
string. The difference is that dictionaries use keys to access data, not numbers. In Python, a key can be any
non-mutable value.

Non-mutable (changeable) values include:

• Strings

• Numbers (both floating point and integer types)

• Boolean values

• None

• Tuples of non-mutable types - a comma separated list of values, possibly in parentheses

What’s a tuple?

A tuple is any comma separated list of items, possibly enclosed in parentheses. It is simply an ordered
sequence of things. Tuples support a variety of operations and behave a lot like lists. The difference is that
a tuple cannot be changed, similar to a string.

A tuple can appear on the left or right side of an expression. If it appears on the left side, then each element
of the tuple must be a mutable variable. The mapping from right to left is simple ordering.

>>> a = (1, 2, ’hello’)
>>> a
(1, 2, ’hello’)
>>> a[0] = 3
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: ’tuple’ object does not support item assignment
>>> (x, y) = (4, 5)
>>> x
4
>>> y
5
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A dictionary uses curly-brackets instead of the square brackets like a list. You create an entry in a dictionary
by assigning a value to the dictionary indexed by the keyword. As noted above, a keyword can be any
non-mutable type.

d = {}
d[’key’] = ’value’

Just like a list, the value of a dictionary entry can be any type, mutable or immutable (numbers, strings, lists,
objects, etc.). The dictionary class also includes a number of useful methods.

• keys() - returns the list of keys in the dictionary, which can be useful for looping over the entries.

• has key( key ) - returns True if there is an entry in the dictionary for the value in key.

• values() - returns a list of the values in the dictionary.

• items() - returns a list of the key-value pairs in the dictionary as 2-element tuples.

• clear() - deletes all entries in the dictionary.

• get( key, default) - returns the value for key or the value in default if the entry for key doesn’t exist.

To delete a single entry in a dictionary, the syntax is

del d[key]

which deletes the entry indexed by key from dictionary d.

Example: Looping over the contents of a dictionary.

>>> a = {’a’: 13, ’b’: 18, ’c’ : 42}
>>> for item in a.keys():
... print item, a[item]
a 13
c 42
b 18

7.1 How do dictionaries work?

Think about using three digit numbers as keys and strings as the values. Say, for example, that we wanted
to map the number 123 to the string ’thunder’ and the number 456 to the string ’lightning.

d = {}
d[123] = ’thunder’

d[456] = ’lightning’

Since we see the user has given us a number with 3 digits, we could create an array with 1000 spaces and
use the 3 digit number as an index. That would fill up two locations in the 1000 element array with values,
leaving the rest blank. While it’s easy to map the key to an index in the array, that seems like a big waste of
memory unless we store a lot more values in the dictionary.
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What if, when we create the dictionary, we make an array with only a small number of spaces, like ten?
How could we map the three digit numbers to a one digit number? One method is to use a function, like the
modulo operation. If N is the number of elements in the array, we can find the array index by taking the key
value modulo N .

index = key % N

The function that converts a key into an array index is called a hash function. Using the modulo N hash
function, the number 123 maps to index 3 and the number 456 maps to index 6. It is important to note that,
since we cannot recreate the original key from an index (the index 3 maps to any key ending in 3), we have
to store the key along with the value in the dictionary entry. For example, if someone called the has key()
method with the number 153, the dictionary has to be able to return False, even though there is an entry at
index 3 from the number 123.

There are still some problems with trying to map a large space into a small space.

• What if we use the keys 123 and 453, which map to the same space in the array?

• What if we try to store more than 10 items in the dictionary?

To solve the first problem, the dictionary has to have a method of conflict resolution. If the programmer
were to add the line

d[233] = ’rain’

to the dictionary, the modulo hash function would say to put the string ’rain’ at location 3. But location 3
already has ’thunder’ in it. We could have the dictionary store multiple items in a single array entry, using a
list to hold all of the key-value pairs. That means the dictionary would need to search the list of key-value
pairs for any array locations with multiple entries.

An alternative is to have a standard algorithm for finding an empty space. For example, the dictionary could
just keep adding one to the index until it found an empty space in the array. To discover if an entry is in the
dictionary, if the key is not in the proper array location, it would need to search consecutive spaces until it
either finds the proper key or finds an empty space.

When the dictionary runs out of space, it will need to create more. Generally, this is done by doubling the size
of the dictionary and copying all of the current entries into new locations using a new hash function.

Example: Multiple rule string replacement using a dictionary.

Using a dictionary makes the task of multi-rule string replacement simpler. Consider the task of executing
one round of replacement using a replace method in the Lsystem class. If we store the set of rules in a
dictionary we can use each rule’s symbol as the key and each rule’s replacement as the value in the dictionary
entry.

def replace( self, curstring ):
nstring = ’’
for ch in curstring:

nstring += self.rules.get( ch, ch )
return nstring
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7.2 Building Dictionaries

How do we go about building and using dictionaries in a useful way? Some common things we may want
to do include:

• Building a dictionary from a list of key-value pairs

• Building a dictionary from a file

• Building a dictionary in an on-line manner as we read in data

Case 1: Given a list of key-value pairs, how would we build a dictionary from it?

• Given: a list of 2-element lists or tuples

• Initialize an empty dictionary

• Loop over the list of key-value pairs

• Index the dictionary using the key and assign it the value

pair = [ [ ’blue’, ’sky’ ], [ ’green’, ’grass’ ], [ ’red’, ’apple’ ] ]
dt = dict() # create a dictionary using its class name

for pair in keyValueList:
dt[ pair[0] ] = pair[1]

The most important line is the assignment statement in the for loop. The right side of the assignment is the
value to be stored in the dictionary. The left side creates (or accesses) the dictionary entry associated with
the key and assigns the value to it.

Because the idea of building a dictionary from a list of pairs is so common, the constructor for the dictionary
class, the init function, can take in a list of pairs and build the dictionary from that list. The list of
pairs could also be a tuple with tuple pairs.

listpair = [ [ ’blue’, ’sky’ ], [ ’green’, ’grass’ ], [ ’red’, ’apple’ ] ]
tuplepair = ( ( ’road’, ’construction’ ), ( ’traffic’, ’light’ ) )

d1 = dict( listpair ) # pass the list of pairs to the class __init__
d2 = dict( tuplepair ) # pass the tuple of tuple pairs to the class __init__

Case 2: Given a file with columns of data, how would we build a dictionary from it?

The basic idea is to read through the file line by line. One of the columns will play the role of the key, while
the remaining columns will be the value field. In this case, we have to make a decision about how to store
the data in the value field. Some options include:

• Store the items as a list (mutable)

• Store the items as a tuple (non-mutable)

The actual process of reading the data involves reading a line, splitting the line into strings, processing each
string and storing the data into the entry indexed by the key.
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# open, read, and close the file
fp = file( ’filename’, ’r’ )
lines = fp.readlines()
fp.close()

# create a new dictionary
dt = {}

# for each line, split it and make the first word the key
for line in lines

line = line[:-1] # remove the newline
words = line.split() # split

dt[ words[0] ] = words[1:]

Case 3: Consider the case of reading in a text document and counting the occurrence of each word.

The basic idea is to go through the file word by word.

• Grab the next word

• If the program has not seen it before, create a dictionary entry with the value 1 in it

• Otherwise, add one to the existing value of the dictionary entry for the word.

When the process is complete, each unique word will have its own entry in the dictionary along with a count
of how many times that word was used. The syntax of the inner loop is straightforward.

counter = {}

for w in words:
counter[w] = counter.get(w, 0) + 1

The above three lines do a number of things.

• The first line creates an empty dictionary

• The second line loops through all of the things in the words list.

• The right side of the third line first checks if w is a valid key using the get method. If it is valid, the
word has been seen before and the get method returns the current value of the dictionary entry. If it is
invalid, then the get method returns 0. In both cases, the result is added to one.

• The assignment statement then takes the value generated by the right side and puts it into the dictionary
entry for the word in w, creating the entry if it doesn’t yet exist.
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Example: Reading a document and counting word frequency.

# a comparison function that uses the second item in a list, tuple, or string
def wordsort(a, b):

if a[1] > b[1]:
return -1

elif a[1] < b[1]:
return 1

return 0

# open file and initialize variables
fp = file(’constitution.txt’, ’r’)
counter = {}
totalWords = 0

# loop over all of the lines of the file
while True:

# read a line and check for an empty line (EOF)
line = fp.readline()
if line == ’’:

break

# go through and remove commas and periods
newline = ’’
for c in line:

if not (c == ’.’ or c == ’,’):
newline += c

# split newline and put the result into a words list
words = newline.split()

# build the dictionary, creating new entries as new words get found
for w in words:

counter[w.lower()] = counter.get(w.lower(), 0) + 1
# keep track of the total number of words
totalWords += 1

# number of words is the length of the dictionary
numWords = len(counter)
print ’Words in document: ’, totalWords
print ’Number of words: ’, numWords

# get an list of key - value pairs
wordlist = counter.items()

# sort the list
wordlist.sort(wordsort)

# print out the top 20 words
show = 20
print ’\nTop’, show,’words:\n’
for i in range( show ):

print wordlist[i][0], " : ", wordlist[i][1]
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7.3 Stochastic L-Systems

The next modification to L-systems we’re going to make is to permit more than one rule per symbol to exist.
Another way to phrase it is that there may be more than one possible replacement for each symbol.

The first thing we need to do is decide how to represent multiple replacement strings for a given symbol.
The current method of representing a single rule is to use a dictionary where the key is the symbol, and a
list containing the replacement string is the value.

{ ’F’ : [ ’f[+F]F[-F]F’ ] }

The complete set of rules is a dictionary of the individual rules.

{ ’F’ : [ ’f[+F]F[-F]F’ ], ’f’ : [ ’ff’ ] }

To incorporate multiple replacement strings, we can add the alternatives to the value field list of replace-
ments.

{ ’F’ : [ ’F[+F]F[-F]F’, ’F[-F]F[++F]’ ] }

The symbol is the key, and the possible replacement symbols are in the list self.rules[key] . There-
fore, if we want to randomly choose a replacement rule, we can use the choice function in the random
package.

random.choice( self.rules[key] )

The choice function selects a random element of the given list, with each element of the list having the same
probability of being selected.

Example: L-system generation with multiple rules and duplicate rules

def replace(self, bstring):
"""Uses the L-system parameters to execute one iteration of replacement"""

newstring = ’’
for ch in bstring:

newstring += random.choice( self.rules.get(ch, [ch]) )

# return the string
return newstring

Because we have only a single entry in the dictionary for each symbol, the algorithm looks almost identical
to the case where there is only one replacement string for each symbol. The only real change is that we are
using the random.choice() function to select one of the replacement rules in the dictionary entry (which is
now a list of replacement strings). Note the use of the get method to access the dictionary. If the particular
key does not exist as a rule in the L-system definition, then the get function returns the character in a list as
the result.
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8 Non-Photorealistic Rendering

Non-photorealistic rendering is creating images using a computer that intentionally avoid realism. Often,
the intent is to simulate a particular artistic style such as impressionism, pointillism, or technical drawings.
There isn’t any requirement to draw simple lines when interpreting an L-system, and replacing a Line object
with a Crayon or Brush object can result in some interesting visual effects.

The basic process for NPR is as follows.

1. Select a style or a description of a style you want to achieve

2. Develop a model of how the style is created

3. Convert the model into an algorithm for generating the style

4. Implement the algorithm as part of a drawing system

The models can be simple or complex. Watercolor, for example, requires extensive modeling in order to get
reasonable results. The best work to date models the shape of the paper, the amount of paint and water on
the brush, the action of water through the paper’s capillaries, and the flow of pigment particles.

Some examples of NPR styles that have been implemented include:

• Impressionist oil painting or Van Gogh’s fluid style

• Watercolor

• Pen and ink (cross-hatching)

• Pointillism or splatter painting

• Mosaics

• Technical drawing

Crayon/Marker: how would we make a drawing look like Crayon or marker?

• Model: lines with random widths connecting locations imperfectly

• Algorithm:

1. Get the start point A and the end point B

2. Perturb A and B using a Gaussian distribution

3. Move the turtle to A without drawing

4. Select a randomized width

5. Move the turtle to B drawing the line

6. Move the turtle to the proper end point without drawing

7. Reset the width

• Implementation:

– Need to set up a field in the interpreter specifying the style

– Modify the ’F’ and ’f’ cases to call the proper drawing method
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8.1 Line Representation

One approach is to divide the line into two pieces and draw the two pieces with small random offsets
(perturbations). The ideal mid-point is defined as average of the two endpoints. Note that the point equations
need to be calculated for both x and y.

Pmid = (P1 + P2)/2 (3)

Both the endpoints and the midpoint can be perturbed by a small random amount (add a small random value
to x and y) in order to get two slightly imperfect lines instead of one perfect one.

For dividing a line into multiple segments, the parametric representation of a line is useful. Any point
between P1 and P2 can be written as a function of a parameter K ∈ [0, 1].

P = P1 +K(P2 − P1) (4)

Using a parametric equation, it is possible to generate several random numbers between 0 and 1 and use
those numbers to subdivide the line in random places.

8.2 Some NPR Ideas

Sketch: split the line into two parts, possibly vary the width

• Calculate the midpoint

• Perturb the end points and perturb the midpoint twice

• Pick a randomized width

• Draw between the start point and the first mid point

• Pick a randomized width

• Move to the second mid point and draw the second line

• Make sure the turtle gets back to its proper location and orientation

Pen and Ink: how could we make a tree drawing look like pen and ink with cross-hatching?

• Like the crayon, could use many lines for one

• Could make outlines with cross-hatching in the middle

• Could just slightly perturb the lines and use cross-hatching for the leaves

Brush: lots of line segments representing ink dipped by bristles

• Use many approximately parallel lines

• Perturb lengths slightly

• Use a combination of thicknesses

• Would be nice to blend similar colors

c©2010 Bruce A. Maxwell 67 December 8, 2010



CS151: Problem Solving and Programming Lecture Notes

Splattering: a sequence of circles along an approximate line

• Generate a sequence of points along the line

• Jitter each point in x and y using a Gaussian distribution

• Place a circle of varying radius (Gaussian or uniform) at each location

8.3 Manipulating Colors

Color provides some interesting opportunities in NPR. For example, a brush stroke may not produce com-
pletely identical colors. Some individual brush hairs may contain more paint than others, leading to dif-
ferent levels of saturation within a single stroke. The following color manipulations provide some useful
results.

Chromaticity

• The chromaticity of an R, G, B color is the color values divided by their sum. The chromaticity
represents the color without the intensity (dark red and bright red have the same chromaticity).

{r, g, b} =
{R,G,B}
R+G+B

(5)

• The meaning of chromaticity tells us that scaling a color uniformly in all color channels maintains
the chroma of the color with varying intensity. The only restriction is that the scale factor γ ∈ [0, 1].
The scalar γ must be the same for all three color channels, even if it is the result of a random number
generator (like random.random()), in order to scale the color properly.

(R′, G′, B′) = (R,G,B) ∗ γ (6)

Saturation

• Saturation describes the strength of a particular color, or chroma compared to a pure grey or white.
Shades of grey are completely unsaturated colors, since all of the color channels have same value. A
pure red, such as (1, 0, 0), would constitute a fully saturated color, since the minimum common value
across the color channels is zero.

• Saturation is normally defined as a function of the maximum or minimum channel and the color’s
overall intensity. One definition for the HSI color space is given below, where m = min{R,G,B}
and I = (R+G+B)/3.

SHSI = 1− m

I
(7)

• An alternative definition of saturation takes into account the difference between the maximum and
minimum color channels C = max{R,G,B} −min{R,G,B} and the value of the maximum color
channel V = max{R,G,B}.

SHSV =
C

V
(8)
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• One method of creating a set of colors with the same chroma but different saturation is to create a
weighted average of the original color and a grey value. If the original color is (R,G,B), and the
maximum color value V = max{R,G,B}, then the following expression gives a family of colors
with the same chroma, but different levels of saturation, where SHSV ∈ [0, 1]. Given SHSV = 1, the
expression returns the original color. Given SHSV = 0, the expression returns a grey color.

(R′, G′, B′) = SHSV (R,G,B) + (1− SHSV )(V, V, V ) (9)
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9 Algorithms

9.1 Recursion

Consider the following problem statement.

Using the turtle, draw a sequence of squares from left to right, where the right side of one square
is touching the left side of the next square. The first square should be of size X. The last square
should be of size one. Each square should be half the size of its left neighbor.

How could we write a program to solve the task? One method would be to calculate the size and position of
all of the squares and then draw them.

A different approach is to think of the problem one square at a time. We know the size of the first square
(X). Therefore, the size of the next square must be X/2, and it must start X to the right of the first square.
The only difference between the process needed to draw the first square and the process needed to draw the
second square is the size of the square.

What if we create a function that executes all of the operations necessary to draw one square?

def makeSquare( X, x0, y0 ):
s = shape.Square(X)
s.draw(x0, y0)

What if we then add one line to the function that specifies how to draw the next square?

def makeSquare( X, x0, y0 ):
s = shape.Square(X)
s.draw(x0, y0)
makeSquare( X/2, x0 + X, y0 )

While this will draw all of the correct squares, it will not stop. Therefore, we need to check if X >= 1
before drawing a square.

def makeSquare( X, x0, y0 ):
if X >= 1:

s = shape.Square(X)
s.draw(x0, y0)
makeSquare( X/2, x0 + X, y0 )

Now the function will stop calling itself once it reaches the final size square.

Recursion is the idea of defining a function that calls itself in order to repeat a sequence of operations.
There are two requirements for recursion to work properly.

1. There must be a base case where the function does not call itself.

2. Each time the function is called, it must make progress towards the base case.

If a function is recursive, but does not meet both of these conditions, then the recursion is not guaranteed to
stop in a finite length of time.

An important aspect of recursion is how a programming language implements functions. Python uses sym-
bol tables to represent the active variables within a function. Each time a function is called, it creates a new
symbol table that exists for the duration of the function call. In the case of recursion, each recursive call
creates a new symbol table.
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For example, consider the following version of the same function as above.

def makeSquare( X, x0, y0 ):
if X >= 1:

makeSquare( X/2, x0 + X, y0 )
s = shape.Square(X)
s.draw(x0, y0)

The re-ordered version draws the squares from smallest to largest. If all of the function calls shared a single
symbol table, this version would not work properly because the last function call would have the smallest
value of X. Instead, when a particular function call terminates, Python removes its symbol table and reverts
back to the prior symbol table.

Example: Binary search of a list.

Searching a list of sorted items is a useful capability. A simple recursive algorithm solves the problem
efficiently. The idea is to look at the middle element of the sorted list and compare it to the target. If the
middle element is larger than the target, recursively search the lower half of the array. If the middle element
is smaller, search the top half. If the middle element happens to be the target, return success.

The algorithm terminates when either the target is found or there is no more data left to search. Since the
data divides in half each time–and we’re dealing with integer data–the maximum depth of the recursion is
log2(N), where N is the number elements in the list.

# returns True and the index of theValue if it is in theList
# returns False and -1 otherwise
def binsearch( theList, theValue, startIndex=0, endIndex=None ):

# if endIndex is None, search the whole list
if endIndex == None:

endIndex = len(theList) - 1

# terminal case: startIndex is greater than the endIndex
if startIndex > endIndex:

return (False, -1)

# calculate the midpoint
mid = (startIndex + endIndex) / 2

# check the midpoint value
if theList[mid] == theValue:

return (True, mid)

# otherwise, search the bottom half or the upper half
if theList[mid] > theValue:

return binsearch( theList, theValue, startIndex, mid-1, depth+1 )
else:

return binsearch( theList, theValue, mid+1, endIndex, depth+1 )

The binsearch algorithm is a valid recursive solution because it has a base case (two, actually) and it always
reduces the scope of the problem.
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9.2 Interpreters

An interpreter is a program that converts information from one form to another. The interpreter we have used
to convert L-system strings into graphics uses a simple approach that converts each individual character into
a graphical action. The characters require no context in order to execute the proper action. In other words,
the action is not dependent upon the previous or subsequent characters in the string.

Unfortunately, single characters provide a limited selection of actions. Actions such as forward, turn left,
or turn right become more powerful if we can give them parameters. Parameters also permit parameterized
L-systems, which can model a greater variety of natural forms.

Consider the string FF(120)+F(60)+F(60)+F(120)+. Let the numbers in parentheses modify the
following character’s action. Therefore, the first (120) modifies the first left turn.

How would we write an interpreter to execute the string properly? Identifying a parameter is straightforward:
it is a numeric value in between two parentheses. The action it modifies is the next action in the sequence.
Therefore, the interpreter needs to keep track of when a parameter starts, the parameter string seen so far,
and whether to use a parameter to modify the next action. When executing an action, the interpreter needs
to make use of the parameter’s value if it exists.

In order to properly handle the parameters, the interpreter needs to be watching for the parentheses. When it
finds an open parenthesis, it needs to enter a state where it does nothing but append the input characters into
a string until it reaches the close parenthesis. At that point, it can convert the parameter string to an actual
value and continue with normal interpretation of the string. Note that these three cases need to be different
than the main if-then-else structure that interprets the action characters.

The new interpreter algorithm is as follows. Note that this version shows the cases only for ’F’, ’+’, ’-’, ’(’,
and ’)’. The push and pop operators ’[’ and ’]’ work identically as before.
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Parametric Interpreter

def drawString( self, instring, distance, angle ):

Initialize the stack to the empty stack
Initialize the parameter string to the empty string
Initialize the parameter value to None
Initialize the parameter state to False

Loop over the input string

# handle parameters
if the character is ’(’

assign to the parameter string the empty string
assign to the parameter state the value True
continue to the next character

else if the character is ’)’
assign to the parameter value the cast of the parameter string to a float
assign to the parameter state the value False
continue to the next character

else if the parameter state is True
append to the parameter string the current character
continue to the next character

# begin a new if-then-else statement
if the character is ’F’

if the parameter value is None
Send the turtle forward by distance

else
Send the turtle forward by distance * parameter value

else if the character is ’+’
if the parameter value is None

Turn the turtle left by angle
else

Turn the turtle left by the parameter value

else if the character is ’-’
if the parameter value is None

Turn the turtle right by angle
else

Turn the turtle right by the parameter value

# note this is inside the loop, outside the if-then-else
Set the parameter value back to None

The new interpreter will convert the string FF(120)+F(60)+F(60)+F(120)+ into two forward mo-
tions by the distance drawString function parameter, a left turn by 120◦, another forward by distance,
a left turn by 60◦, and so on through the string.
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9.3 Parametric L-systems

In addition to enabling more complex shapes, the purpose of generating a parametric interpreter is to enable
parametric L-systems. A parametric L-system supports parameters action characters. Parametric L-systems
enable us to model systems where the meaning of the action characters changes with each iteration. For
example, a specific ’F’ symbol may represent a short branch after one iteration of replacement, but a long
branch after multiple iterations of replacement.

Consider the L-system below and two rounds of replacement.

base (100)F
rule (x)F (x)F[+(x*0.67)F][-(x*0.67)F]

(100)F
(100)F[+(67)F][-(67)F]
(100)F[+(67)F][-(67)F][+(67)F[+(45)F][-(45)F]][-(67)F[+(45)F][-(45)F]]

Note that the rule is defined in terms of a variable x and the rule’s symbol consists of the parameter expres-
sion (x) and the character it modifies. The replacement also contains both x and expressions of x.

The base string contains an actual numeric value, which replaces x in the replacement process. The result
is that, during replacement, the expressions of x in the replacement modify the initial value of 100, making
each subsequent branch shorter.

Executing a round of replacement for a parametric L-system is more challenging than non-parametric ver-
sions because the context of a character matters. Also, the algorithm needs to match numeric values in the
base string to expressions in the replacement string.

Since the parameter information comes before the symbol it modifies, determining if a character has a
parameter is similar to the process used by the interpreter. The ’(’ character initiates collecting the parameter
string; the ’)’ character terminates the parameter string and converts it to a value.

For standard characters, the algorithm needs to first test if there is a parameter for the character. If not, then
it can execute replacement as usual, looking up the correct rule and inserting the replacement into the new
string.

For a character with a parameter, the algorithm first needs to check if there is a parameterized version of
the rule. In the L-system above, (x)F is an example of a parameterized rule. If a parameterized rule
exists, the algorithm then picks a replacement–randomly, if the rule has more than one–and substitutes the
actual parameter value for the x placeholder, evaluating expressions as necessary. The algorithm appends
the resulting string onto the new string.

If there is no parameterized rule for the character, then the algorithm needs to check if a non-parameterized
rule exists in the L-system. If it does, then it needs to replace all unparameterized instances of the key with
the parameterized version. For example, consider the L-system below and two rounds of replacement.

base (10)F
rule F +F--F+

(10)F
+(10)F--(10)F+
++(10)F--(10)F+--+(10)F--(10)F++
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The parameter follows the character it modifies, enabling the base string to control the meaning of a symbol,
even if the rules are not parameterized.

The final case is when the input string has a parameterized symbol, but no explicit rule exists for the character
in the L-system. In that situation, the character replaces itself and the parameter follows along. The L-system
below shows an example. Note how the parameterized ’+’ characters in the base string propagate through the
replacement process. Because there is no rule for the ’+’ character, the parameters in the base string affect
only the specific cases in the base string and do not propagate to other instances of the ’+’ character.

base F(30)+F(60)+F(90)+
rule F F+F-

F(30)+F(60)+F(90)+
F+F-(30)+F+F-(60)+F+F-(90)+
F+F-+F+F--(30)+F+F-+F+F--(60)+F+F-+F+F--(90)+

The replacement algorithm for parameterized L-systems is given below as pseudo-code. The substitute
and insert functions, included in full, take care of the process of evaluating expressions and handling
parameter value substitution.

The substitute function takes in 1) a replacement string that may have multiple parameterized symbols
using expressions of x and 2) a numeric value. It substitutes the numeric value for x in each of the parameter
expressions and then evaluates each expression to generate a new numeric value. The output string has
numeric values in place of the x expressions for each parameterized character.

The substitute function works by looping over the input string. If it finds no parentheses, then the
output string will be the same as the input string.

If, during the loop, it finds an opening parenthesis, then it starts collecting characters into a string until it
reaches the closing parenthesis. Then it converts the parameter string, which could be either a number or a
mathematical expression of x, into a lambda function using the eval Python function. A lambda function
is a nameless function that returns the value of its last expression. By assigning the lambda function to
the variable lambdafunc, the substitute function can then call it with the numeric value for x and
get back a new numeric value. Concatenating the new numeric value in between opening and closing
parentheses completes the substitution of the x expression.

The insertpar function is somewhat simpler. It takes an input string, a parameter string and a symbol.
It’s purpose is to place a parameter string, inside parentheses, in front of each occurrence of symbol in the
input string.
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Parameterized L-system Replacement

def replace(self, istring):

Initialize the output string to the empty string
Initialize the parameter string to the empty string
Initialize the parameter value to None
Initialize the parameter state to False

for each character c in the input string

# handle parameters
if c is ’(’ then we’re starting a parameter

assign to the parameter string the empty string
assign to the parameter state the value True
continue to the next character

else if c is ’)’ then we’re ending a parameter
assign to the parameter value the float cast of the string
assign to the parameter state the value False
continue to the next character

else if the parameter state is True
append to the parameter string the current character
continue to the next character

# handle regular characters
if the parameter value is not None

assign to a local variable (key) the expression ’(x)’+c

if key is in the dictionary self.rules
assign to a variable (replacement) a random choice from self.rules[key]
add to tstring the result of self.substitute( replacement, parval )

else
if c is in the dictionary self.rules
assign to a variable (replacement) a random choice from self.rules[c]
add to tstring the result of self.insertpar( replacement, parstring, c )

else
add to tstring the string ’(’ + parstring + ’)’ + c

set parval to None

else (no parameter, so just a standard replacement rule)
if c is in self.rules

add to tstring a randomly chosen replacement from self.rules[c]
else

add to tstring the value c

return tstring
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Parametric L-systems Parameter Substitution Function

# given: a sequence of parameterized symbols using expressions
# of the variable x and a value for x
#
# substitute the value for x and evaluate the expressions
def substitute(self, sequence, value ):

# an expression string and state variable
expr = ’’
exprgrab = False

# the output sequence
outsequence = ’’

# for each character in the sequence
for c in sequence:

# if a parameter expression starts
if c == ’(’:

# set the state variable to True (grabbing the expression)
exprgrab = True
expr = ’’
continue

# else if a parameter expression ends
elif c == ’)’:

# set the state variable to False (expression completed)
exprgrab = False

# create a function out of the expression
lambdafunc = eval( ’lambda x: ’ + expr )

# execute the function and put the result in a (string)
newpar = ’(’ + str( lambdafunc( value ) ) + ’)’

# add the new numeric parameter to the output sequence
outsequence += newpar

# else if the state variable is True (grabbing an expression)
elif exprgrab:

# add the character to the expression
expr += c

# else not grabbing an expression and not a parenthesis
else:

# add the character to the out sequence
outsequence += c

# return the output sequence
return outsequence
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The insertpar function loops over all of the characters in the input string. It copies all characters not
equal to the symbol directly from the input to the output string. If it finds a character that matches the symbol,
it first inserts the parameter string–in parentheses–into the output string and then copies the character.

Parametric L-systems Parameter Insertion Function

# given: a sequence, a parameter string, a symbol
#
# inserts the parameter, with parentheses, before each
# instance of the symbol in the sequence

def insertpar(self, sequence, parstring, symbol):

# initialize a return string
tstring = ’’

# for each character in the input string
for c in sequence:

# if the character is the symbol
if c == symbol:

# add the parameter string in parentheses
tstring += ’(’ + parstring + ’)’

# add the character
tstring += c

# return the output string
return tstring
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10 3-D Turtle

Turtle graphics are not limited to two dimensions. The concept of drawing by orienting and moving a local
coordinate frame applies to any number of dimensions. In two dimensions, the local coordinate frame is
represented by the turtle’s position (x, y) and its orientation on the x-y plane, θ. When we move to three
dimensions, the concepts of turning and moving forward are the same, but there are more ways to turn than
just left and right.

The 3D turtle provided as part of the last project is designed to emulate the standard 2D turtle. There are a
few differences, and the 3D turtle does not support some of the new functionality in the Python 2.6 turtle
package such as the pencolor and fillcolor functions. For the most part, however, a few simple modifications
to the Interpreter class allows the existing turtle code to work without modification.

1. Import turtleTk3D at the top of the interpreter.py file.

import turtleTk3D

2. Set up a global variable called turtle and assign it the value None

turtle = None

3. Inside the init function of the Interpreter class, create a new turtle object and assign it to the
turtle global variable

global turtle
turtle = turtleTk3D.Turtle3D()

Now all of your remaining interpreter code will work as usual.

The X axis begins pointing right on the screen. The Y axis begins pointing up on the screen. The Z axis (X
cross Y) points out of the screen. Forward is always in the direction of the local X axis.

• Yaw: rotation to the left or right, which is rotation about the Z axis.

– Positive yaw (+) is left

– Negative yaw (- ) is right.

• Pitch: rotation down or up, which is rotation about the Y axis.

– Positive pitch (&) is down

– Negative pitch (ˆ) is up.

• Roll: rotation about the forward axis, which is rotation about the X axis.

– Positive roll (\) is to the right

– Negative roll (/) is to the left.

If you have no pitch or roll commands in a string, then your shape will stay on the plane of the screen and
will be flat. If you include a pitch or roll, then your shape becomes 3D.

Consider the following string.

F&F&&F&+F&F&&F&+F&F&&F&+F+&FˆF+F+F+F+ˆF&

The string overwrites several lines twice.
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[F+[&F]F+[&F]F+[&F]F+&FˆF+F+F+F+]

The above string writes each side only once and returns the turtle to its original position.

10.1 Updating the Interpreter

• Modify the place function to incorporate a z coordinate (leave orient a scalar value)

• Modify the goto function to allow a z coordinate

• Modify the various styles to work in 3D, which means you need Z coordinates and perturbations

• Modify the shape class to include roll and pitch (orientation is yaw): order is place, roll, pitch

10.2 Representing the Turtle in 3D

In 2D, a complete description of the turtle’s position and orientation is given by three values: (x, y, θ). When
we add a third dimension, we have to store additional information to completely represent the turtle.

Three coordinates are sufficient to represent the turtle’s location: (x, y, z). Three coordinates are also suf-
ficient to represent the turtle’s orientation. However, such a representation can be difficult to visualize or
manipulate. Instead, we can represent the turtle’s orientation using two 3-vectors that represent the turtle’s
forward and up directions.

(~F , ~U) = ((Fx, Fy, Fz), (Ux, Uy, Uz)) (10)

The forward vector ~F is the direction in which the turtle will travel given a forward command. The up vector
~U specifies the z-axis of the turtle’s coordinate system, which is the axis that defines left and right turns.
The turtle’s default orientation on the screen is Od = ((1, 0, 0), (0, 0, 1)), which means the turtle is facing
to the right and the up vector comes out of the screen.

The 3D turtle heading function will return the current forward and up vectors. The turtle’s setheading
function expects either a single scalar or a pair of 3-valued vectors. Given a single scalar, it gives the turtle
the default up vector (0, 0, 1) and orients the turtle in the x-y plane according to the given angle.

The 3D turtle is actually quite forgiving about how the forward and up vectors are defined. Neither vector
needs to be a unit vector, and the two vectors do not need to be orthogonal. The only requirement is that
the two vectors not point in the same direction. The forward vector always defines the direction in which
the turtle will move. The difference between the forward vector and the up vector will define the turtle’s up
orientation.
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10.3 Subdivision Shapes

A subdivision shape, or surface, is defined by an initial collection of shapes and a rule for building a new set
of shapes from the existing set.

Circle

• Begin with a set of four lines that form a square with corners on the unit circle.

• Subdivision rule: divide each line in half and move the midpoint to the unit circle boundary.

Bezier curve

• Given the point set (A,B,C,D)

• Calculate the following

A1 = (A+B)1
2

B1 = (B + C)1
2

C1 = (C +D)1
2

A2 = (A1 +B1)1
2

B2 = (B2 + C2)1
2

A3 = (A2 +B2)1
2

• Build two new point sets: (A,A1, A2, A3) and (A3, B2, C1, D.

• When drawing a line segment, set the forward turtle vector to point from the start to the end vertex.

• Set the up vector to something other than the forward vector

Sphere

Just as we can create a circle using a subdivision shape, we can also create a sphere using triangles and
subdividing them into smaller and smaller pieces.

• Begin with a set of eight triangles that form an octahedron with points on the unit sphere. Each
triangle is defined by three 3-D points.

pointlist = [ ( (0, 0, 1), (1, 0, 0), (0, 1, 0) ),
( (1, 0, 0), (0, 0, -1), (0, 1, 0) ),
( (0, 0, -1), (-1, 0, 0), (0, 1, 0) ),
( (-1, 0, 0), (0, 0, 1), (0, 1, 0) ),
( (0, 0, 1), (0, -1, 0), (1, 0, 0) ),
( (1, 0, 0), (0, -1, 0), (0, 0, -1) ),
( (0, 0, -1), (0, -1, 0), (-1, 0, 0) ),
( (-1, 0, 0), (0, -1, 0), (0, 0, 1) ) ]

• The subdivision step divides each triangle into four new triangles. First, find the midpoint of each
edge segment, then create four new triangles. If the original triangle vertices are A, B and C, the
following defines the new set of triangles.

AB = (A+B)1
2

BC = (B + C)1
2

CA = (C +A)1
2

The new triangles are T1 = (A,AB,CA), T2 = (B,BC,AB), T3 = (C,CA,BC), T4 = (AB,BC,CA).
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The challenging part of drawing a triangle is handling it in a manner that lets us also use the NPR styles.
The concept is straightforward: the three points on the triangle define a plane, so there exists a plane on
which we can draw the triangle as three forwards and two left turns. We just need to calculate the plane, the
forward distances, and the angles.

Triangles are necessarily convex. If we also assume that the points are defined in a counter-clockwise
manner, it makes the calculations easier. The length of each side– LAB , LBC , and LCA–is the first thing we
calculate.

The forward vector for the first turtle motion is the vector ~AB. A reasonable left vector is − ~CA. The cross-
product of these two vectors tells us the proper up vector. In python, if forward holds the forward vector
and left holds the left vector, the following expression generates an appropriate up vector.

up = ( forward[1]*left[2] - forward[2]*left[1],
forward[2]*left[0] - forward[0]*left[2],
forward[0]*left[1] - forward[1]*left[0] )

If we normalize the three line segment vectors, the following calculations produce the two outer angles.

length of V = LV =
√
V 2

x + V 2
y + V 2

z (11)

normalized vector V = V̂ = (Vx/LV , Vy/LV , Vz/LV ) (12)

cosine of first outer angle = c0 = ÂB · B̂C (13)

cosine of second outer angle = c1 = −B̂C · ĈA (14)

angle, in degrees = θi = cos−1(ci)
180
π

(15)

After placing the turtle at vertex A and orienting it to the forward and up vectors defined above, we can create
the following parameterized string, inserting the calculated values for LAB , LBC , LCA, θ0, and θ1.

(LAB)F (θ0) + (LBC)F (θ1) + (LCA)F

One way to generate this string is to use a formatted string (see section 4.5.2 of the textbook). The following
expression substitutes the appropriate values into the fields defined by the %.3f format specifier, which
indicates Python should format the number as a floating point value with three decimal places.

# generate the string to draw
s = ’(%.3f)F(%.3f)+(%.3f)F(%.3f)+(%.3f)F’ % (Lab, T0, Lbc, T1, Lca) }

# draw the string s
dev.drawString( s, self.distance*scale, self.angle )
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10.4 Nudge

The 3D turtle also includes a function called nudge. The nudge method takes in a 3-element vector and adds it to the
forward orientation vector, recalculating the turtle’s orientation as necessary. The nudge method enables you to easily
simulate the effect of gravity or wind on trees.

• Use the 3D turtle’s nudge capability to simulate forces on your shapes (e.g. trees)

• Nudge moves the orientation of the turtle towards the nudge direction

• Can build it in as an optional step in your interpreter’s forward function
– Define gravity as either None or a 3-vector
– If gravity is not None, nudge the turtle with the 3-vector

• Keep the gravity vector so all elements are between -1 and 1
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11 What Have You Learned?

Highlights of the semester

• What can a computer do?

• A programming language: Python

• The main structures of algorithms: assignments, conditionals, and loops

• Organizational structures of languages: functions, classes

• Data structures: strings, tuples, lists, stacks, hash tables (dictionaries)

• Input/output: reading and writing files

• Programming as abstraction: making things general / using parameters

• Grammars: describing a set of valid strings using rules

• Interpretation: decoding symbols into actions

• Basis for design: encapsulation, modularity, inheritance, polymorphism

• Memory models: objects, object references, variables, system stack

• Recursion: solving big problems by solving simpler problems

• Graphics: turtle and otherwise, thinking visually

• Graphical User Interfaces: menus, clicks, events

• Debugging

Sometimes it’s difficult to see the forest for the trees (or bugs). This is why it’s important to have a clear understanding
of the problem and the steps required by the solution.

Thinking about a problem computationally means trying to describe a series of steps that a computer could execute to
solve it. The actual implementation of the required steps is just a matter of syntax and good design decisions.

There is no substitute for practicing design and coding, but they are not the most critical skill to possess. The most
critical skill is the ability to formulate the steps required to solve the problem.

11.1 How Can This Help You?

Being more comfortable with a computer is a skill you will always have. It will give you an edge over people who are
uncomfortable, or who do not have a good mental model for how a computer works.

Art: for an interactive art exhibition, how would you describe the behavior of the installation as a computer pro-
gram?

English/Linguistics: say you want to compare the average and degree of variation in sentence lengths of Hemmingway
and Faulkner. How would you do it?

Government/Economics: say you have a set of data in a file and you want to read in the data, calculate averages, and
print them out neatly. How would you do it?

Environmental Studies: if you want to combine information from multiple overlapping maps in a particular manner,
you can write scripts (in Python) to do simple (or complex) calculations.

Biology: how would you calculate statistics on a set of data? (Did you know Excel has a programming language?)

Life: say you’re playing D&D and you don’t have a 12-sided die? How could you make an automatic character
generator?
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11.2 Examples

While Python is a useful language to learn, there are many others. If you have an understanding of the main structures
of computational algorithms, it is not difficult to take what you’ve learned and apply it to other languages.

Python

import random

N = 100
data = []
for i in range(N):

data.append(random.random() * 10.0)

sum = 0.0
count = 0.0
for value in data:

sum += value
count += 1

mean = sum/count

print ’Mean is %.2f’ % mean

C: Note the explicit variable typing and the different for loop style.

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <sys/time.h>

int main(int argc, char argv[]) {

int N = 100;
float *data = malloc(sizeof(float) * N);
float sum, count, mean;
int i;

srand48(time(NULL));
for(i=0;i<N;i++) {

data[i] = drand48() * 10.0;
}

sum = 0.0;
count = 0.0;
for(i=0;i<N;i++) {

sum += data[i];
count++;

}

mean = sum / count;
printf("Mean is %.2f\n", mean);

return(0);
}
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C++: Not much difference from C, slight changes in memory and I/O calls.

#include <sys/time.h>
#include <iostream>
#include <cmath>

int main(int argc, char argv[]) {

int N = 100;
float *data = new float[100];

srand48(time(NULL));
for(int i=0;i<N;i++) {

data[i] = drand48() * 10.0;
}

float sum = 0.0;
float count = 0.0;
for(int i=0;i<N;i++) {

sum += data[i];
count++;

}

float mean = sum / count;

std::cout << "Mean is " << mean << std::endl;

return(0);
}

PHP: More similar to python, but a mixture of C and python concepts.

<html>
<body>
<?
$N = 100;
$data = array();

for($i=0;$i<$N;$i++) {
$data[$i] = (float)rand() / (float)getrandmax() * 10.0;

}

$sum = 0.0;
$count = 0.0;
for($i=0;$i<$N;$i++) {

$sum += $data[$i];
$count++;

}

$mean = $sum / $count;

echo ’Mean is ’.$mean;
?>
</body>
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Java: All programs in Java are class methods. A class must have a main method in order to be an executable program.
Note explicit variable typing, syntax and for loops by C. Memory management is very different, however, as the
programmer does not need to free memory (like Python).

import java.util.*;

public class mean100 {

static public void main(String[] argv) {

double mean;
double sum;
double count;
double[] data;
int N = 100;
Random gen;

gen = new Random();
data = new double[N];

for(int i=0;i<N;i++) {
data[i] = gen.nextDouble() * 10.0;

}

sum = 0.0;
count = 0.0;
for(int i=0;i<N;i++) {

sum += data[i];
count++;

}

mean = sum / count;

System.out.println( "Mean is "+mean );
}

};
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