SQL

Devon Cormack, David Cain, Tyler Harley

2012-11-28

Devon Cormack, David Cain, Tyler Harley SQL



@ language for relational databases
e IBM

e Early 1970's
o SEQUEL — SQL

@ many implementations

o SQL Server
e SQLite
o MySQL
e PostgreSQL
e Oracle SQL

Devon Cormack, David Cain, Tyler Harley SQL



MySQL

e FOSS

@ popular

@ scalable

o Facebook
o Twitter

@ procedural support

Devon Cormack, David Cain, Tyler Harley SQL



@ —— line comment
o ({ block comment})
@ /x C-style block comment */

@ SET @bob = 6; —-- Sets bob to 6
@ DECLARE varl INT; SET varl = 0;

Expressions

SET @a =1
SET @b = 2
SET @c = 3;
SET @d = 4
IF d<aORDb<cORDSC<AdTHEN @ = 8;

Devon Cormack, David Cain, Tyler Harley SQL

b

-

b




Common Programming Statements

Core functions of persistent storage

o C: INSERT
e R: SELECT
o U: UPDATE
e D: DELETE

MySQL Procedural statements

o CREATE PROCEDURE
CREATE FUNCTION
IF...THEN. . .ELSE
label:LOOP...END LOOP

(]

Devon Cormack, David Cain, Tyler Harley SQL


http://en.wikipedia.org/wiki/Create,_read,_update_and_delete

Executing SQL statements

Interpreted or compiled?

@ Depends on implementation

e SQLite (prepare () functions)
@ SQL optimization

e SQL String — (Optimizer) — Execution Plan
o Execution Plan — (Execution) — Result

Execute procedures/functions

CALL testproc(@a) -- stored procedure
SELECT name(in) -- stored function

Devon Cormack, David Cain, Tyler Harley SQL


http://stackoverflow.com/questions/4074767/is-a-dbms-mysql-sql-server-interpreted-or-compiled
http://www.sqlite.org/c3ref/prepare.html

Memory management

Memory management

@ Server managed

@ Specify memory tables with memory engine

CREATE TABLE students ENGINE=MEMORY;

Devon Cormack, David Cain, Tyler Harley SQL



Interesting and ldentifying Features of SQL

non-procedural
implicitly parallel

declarative

e 6 o6 o

case-insensitive

Devon Cormack, David Cain, Tyler Harley SQL



SQL Injection

@ Malicious exploitation of poorly written applications

HI, THIS 15

WERE HAVING SOME
COHPUTER TROUBLE.

o

YOUR SON'S SCHOOL.

Devon Cormack, David Cain, Tyler Harley

OH, DEFR - DID HE
BREAK SOMETHING?

IN awav /

S

DID YOU REALLY WELL, WEVE LOST THIS
NAME YOUR SON YEAR'S STUDENT RECORDS.
Robert'); DROP T HOPE YOURE HAPPY.
TABLE Students;-- 7 ‘]1
AND I HOPE
~OH.YES UITTIE =~ YOUVE LEARNED
BOBBY TARLES, TO SANMIZE YOUR
WE CALL HIM. DATARASE INPUTS.
SQL




SQL Injection

Comic Explanation

@ Given frontend to school’s database, input string name:
SELECT * FROM Students WHERE (student_name=name);

@ name = "Robert’); DROP TABLE Students; --"

@ Resulting query:

o SELECT * FROM Students WHERE (student_name=
’Robert’); DROP TABLE Students;-—- ’);

Devon Cormack, David Cain, Tyler Harley SQL



SQL Injection

How to prevent it?

End goal: Sanitize inputs
(Don't do it yourself!)
Solution: parameterized statements

See bobby-tables.com for language-specific examples.

Bad- vulnerable to injection

cmd = ("SELECT * FROM Students WHERE"
"(user_name = ’%s’)" 7 student_name)

curs.execute (cmd)

Good - uses parameterized statements

cmd = "SELECT * FROM Students WHERE (student_name=’%s’)"
curs.execute(cmd, student_name)

Devon Cormack, David Cain, Tyler Harley SQL


http://bobby-tables.com/

