1 Administrative Topics

- If you would like to take computer science this spring, then sign up for CS232!

- On Tuesday, during the afternoon, we will have alumni from the computer science department visiting. They will be telling their stories and giving advice on resumes.

- Please don’t unplug the computers in Bob’s 225 from their internet connections.

2 L-Systems Project 10

Today we talk about how to understand the stochastic L-systems that Bruce supplied. We also talk about how to create an NPR style.

2.1 Symbols in drawString

To make sysTree2.txt and sysTree3.txt work, we need the following symbols supported by Interpreter .drawString.

- F and f must both mean “forward by the (modified) distance”
• L must draw a leaf whose size can be scaled by a modifier.

• ! must handle the width. If there is no modifier, then it should decrease the width by 1 (being careful not to reduce it below 1). If there is a modifier, then it should set the width to the value of the modifier.

To draw these trees, a good value for distance is 1.

2.2 Understanding sysTree3.txt

Here is the first example L-system:

base (50)F
rule F (50) f !(30)−F<g(5)L>][!(40)+F<g(5)L>]>!F
rule (x)f (1.5*x)f (1.25*x)f (1.7*x)f
rule (x)− (x+1.2)− (x+0.8)− (x+1.05)− (x+1.0)− (x+0.95)− (x+0.87)− (x+1.12)−
rule (x)+ (x+1.2)+ (x+0.8)+ (x+1.05)+ (x+1.0)+ (x+0.95)+ (x+0.87)+ (x+1.12)+

And the observations we made about it:

• Turns, forwards, and leaf-sizes are modified by modifiers.

• The structure of the tree is deterministic (we always move forward and make two branches (or subtrees) to the left and right, and the grown the branch (or subtree) up.

• Distances and angles are stochastic

• The scales in front of F and f should be of comparable sizes.

2.3 Understanding sysTree2.txt

Here is the second example L-system:

base (5)! (100)F
rule (x)F (x)F[!(2*x/3)F<g(5)L>]|!−(2*x/3)F<g(5)L>]|1−(2*x/3)F<g(5)L>]
 (x)F[!−(2*x/3)F<g(5)L>]|!(1*x/2)F<g(5)L>]
 (x)F[!+(2*x/3)F<g(5)L>]|!(1*x/2)F<g(5)L>]}
And the observations we made about it:

- Turns, forwards, leaf-sizes, and widths are modified by modifiers.
- The structure of the tree is stochastic (we branch forward and left, or forward and right, or left and right).
- Distances are decreased as we branch.

2.4 How to make a mess of going forward without making a mess of going forward

We want each forward to be based on the true forward, so we must keep track of the locations we would have visited if we were doing plain old forwards. Why? Because we want to make sure we don’t inadvertantly change the size or shape of our shape.

- Ask the turtle its location and save it in variables \(x_0 \) and \(y_0 \).
- Pick up the turtle and move forward by the appropriate distance.
- Ask the turtle its location and save it in variables \(x_f \) and \(y_f \).
- Draw the line in the appropriate style
- Pick up the turtle and move it to \((x_f, y_f) \).

If your NPR style changes the orientation of the turtle while it is drawing the line, you will want to make sure you change it back.

Suppose we want to make a dashed style. We should have a dashLength field that indicates the length of each dash. Then our dashed line should have dashLength dashes separated by spaces of length dashLength. If twice the dashLength doesn’t divide evenly into the total distance, then we need to be careful to put the turtle at its proper location.
num_dashes = int(math.floor(distance/self.dashLen))
(x0, y0) = turtle.position()
turtle.up()
turtle.forward(distance)
(xf, yf) = turtle.position()
turtle.goto(x0, y0)
for i in range(num_dashes/2):
 turtle.down()
 turtle.forward(self.dashLen)
 turtle.up()
 turtle.forward(self.dashLen)
turtle.goto(xf, yf)