Analysis of Algorithms
CS 375, Fall 2018
Homework 13
Due AT THE BEGINNING OF CLASS Wednesday, November 7

e Reading Assignment: Same as last time: From your textbook (Levitin), read Chap-
ter 5 up to (and including) Section 5.3.

o A general note: When writing up your homework, please write neatly and explain
your answers clearly, giving all details needed to make your answers easy to understand.
Graders may not award credit to incomplete or illegible solutions. Clear communication
1s the point, on every assignment.

Exercises

1. Curly, Mo, and Larry’s Totally Excellent (?) Sorting Algorithm! Professors
Curly, Mo, and Larry of the Portland Institute of Technology (PIT) have proposed the
following in-place sorting algorithm: First, sort the first two-thirds of the elements in
the array. Next, sort the last two-thirds of the array. Finally, sort the first two-thirds
again. (Notice that this algorithm is similar to Mergesort except that it uses three
recursive calls rather than two and there is no merging step! As a consequence, this
algorithm is very easy to implement!)

The pseudocode is given below. Recall that the floor function, |z], simply rounds
down to the nearest integer. This is just used to compute the appropriate two-thirds
and round to an integer so that we don’t use non-integer indices into our array.

Stooge-sort (A,i,7)
begin
if Afi] > A[j] then
swap A[i] and A[j]
ifi+1 > j then
return
=1 —i+1)/3).
Stooge-sort(A,i,j — k) Comment: Sort first two-thirds.
Stooge-sort(A,i + k, j) Comment: Sort last two-thirds.
Stooge-sort(A,i,j — k) Comment: Sort first two-thirds again!
end

(a) Give an informal but convincing explanation (not a rigorous proof by induction)
of why the approach of sorting the first two-thirds of the array, then sorting the
last two-thirds of the array, and then sorting again the first two-thirds of the array
yields a sorted array. A few well-chosen sentences should suffice.

(b) Find a recurrence for the worst-case running time of Stooge-sort. (Don’t forget a
base case!) To simplify your recurrence, you may assume each recursive call is on
a portion of the array that is exactly two-thirds the length of the original array.

(¢) Next, solve the recurrence using the recursion-tree method. Be sure to show
all of your work. Do not use the “Master Theorem.” In your analysis, it may
be convenient to choose n to be ¢* for some fixed constant c. (The value of ¢ that



you choose might not even be an integer! This may seem a bit strange, but it
may significantly simplify the analysis!)

(d) How does the worst-case running time of Stooge-Sort compare with the worst-case

running times of other sorting algorithms (Insertion sort, Mergesort, Quicksort,
Bubblesort, Heapsort)?



