Exercises

By definition (see CLRS Exercise 34-1, page 1101–1102), given a graph $G = (V, E)$, an independent set of G is a subset $V' \subseteq V$ of vertices such that each edge in E is incident on at most one vertex in V'.

The Independent Set decision problem can be specified as follows:

Inputs Graph $G = (V, E)$, positive integer $k \leq |V|

Output Yes (or True) if there is an independent set of size k in G; No (or False) otherwise

1. Give a polynomial-time verification algorithm to show that the Independent Set problem is in NP. Please be clear about what the certificate is that’s being used in the algorithm, and as done in class, make sure to describe in English everything the algorithm needs to do to verify that the certificate is a Yes instance of Independent Set, giving an upper bound on the complexity of each step and showing that the algorithm overall is in polynomial time.

 (You can give pseudocode as part of your description of the algorithm to clarify it, if you’d like, but the algorithm must be fully described in English whether or not pseudocode is given.)

2. Give a polynomial-time reduction algorithm to solve the Clique problem (i.e., the decision problem), using a hypothetical subroutine that solves the Independent Set problem (i.e., the decision problem).

 (Note: As discussed in lecture, you could think of this as one way of showing that if there is a poly-time algorithm for Independent Set, then there is a poly-time algorithm for Clique. Please see me if there are any questions about that!)

3. Show that the Independent Set problem is NP-Complete, under the assumption that the Clique problem is NP-Complete. As always, explain your answer; you can cite results from previous exercises, just be sure to say clearly what result is being used and how it’s being used to show the NP-Completeness of Independent Set. (Doing this exercise will essentially complete exercise CLRS 34-1 part a, on page 1102.)
Optional: Bin-Packing Verification

This exercise is not to be turned in! It’s an exercise that your Prof. thought might be of interest as an additional practice exercise. You are welcome to work on it and talk with your Prof. about it, and a solution to it will be given on the solution set, but it will not be graded.

Recall that the bin-packing decision problem can be specified as follows:

Inputs Set $S = \{i_1, \ldots, i_n\}$ of n items, where item i_z has associated rational-number size s_z ($0 < s_z \leq 1$), and positive integer m.

Output Yes (or True) if all items in S can be placed into m bins of size 1 (or fewer); No otherwise.

Give a polynomial-time verification algorithm to show that the Bin-Packing problem is in NP. As before, please be clear about what the certificate is that’s being used in the algorithm and make sure to describe in English everything the algorithm needs to do to verify that the certificate is a Yes instance of Bin-Packing, giving an upper bound on the complexity of each step and showing that the algorithm overall is in polynomial time.

(You can give pseudocode as part of your description of the algorithm to clarify it, if you’d like, but the algorithm must be fully described in English whether or not pseudocode is given.)