Feel free to work with a friend on this assignment. However, be sure that you understand all the steps.

The plots that you create should be a good test to make sure that your code is correct.

Please turn in your code, along with your answers to the following questions, and screenshots of your plots.

Question 1

a) Write code to determine linear regression coefficients for the data points (1, 1), (2, 2), (4, 2), and (5, 3) using the line equation \(y = c_0 x + c_1 \) model. Use the normal equations directly, **NOT** `scipy.stats.linregress` or another high-level function. The function for the matrix inverse `np.linalg.inv` is helpful.

b) Write code to compute the \(R^2 \) value **from scratch** (i.e. do numpy mathematical operations on your \(A, c, y \), don’t rely on a library function specifically designed to give you an \(R^2 \) value). Is the quality of the fit good or bad?

c) Create a plot using `pyplot` in `matplotlib` with:

- an informative title
- x and y axes labels ('x' and 'y' labels are fine)
- the data points
- the regression curve

See code from class and appendix below for tips.
Question 2

a) Explicitly write out the independent variable matrix A and dependent variable vector y corresponding to the following data fit with the linear regression model $y = \frac{c_0}{x} + c_1 x$. Note: this model does NOT contain an intercept term.

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.955</td>
<td>5.722</td>
</tr>
<tr>
<td>1.380</td>
<td>4.812</td>
</tr>
<tr>
<td>1.854</td>
<td>4.727</td>
</tr>
<tr>
<td>2.093</td>
<td>4.850</td>
</tr>
<tr>
<td>2.674</td>
<td>5.011</td>
</tr>
<tr>
<td>3.006</td>
<td>5.253</td>
</tr>
<tr>
<td>3.255</td>
<td>5.617</td>
</tr>
<tr>
<td>3.940</td>
<td>6.282</td>
</tr>
<tr>
<td>4.060</td>
<td>6.255</td>
</tr>
</tbody>
</table>
b) Write code to determine the regression coefficients. Use the normal equations directly, NOT `scipy.stats.linregress` or another high-level function. The function for the matrix inverse `np.linalg.inv` is helpful.

c) Write code to compute the R^2 value from scratch (i.e. do numpy mathematical operations on your A, c, y, don’t rely on a library function specifically designed to give you an R^2 value). Is the quality of the fit good or bad?

d) Create a plot using `pyplot` in `matplotlib` with:

- an informative title
- x and y axes labels ('x' and 'y' labels are fine)
- the data points
- the regression curve

Appendix: Plotting tips

- Lab machines in Davis 102 should have `matplotlib` installed. If you want to install it on your own machine and you followed the instructions on the [CS251 website](#) to install `numpy` and `scipy`, all you should need to do (on Mac) is run `python3 -m pip install matplotlib` in the Terminal.
- Use `lecture_13_bayesian_updating.py` as your template to plot data.
- `plt.plot(xVals, yVals, 'o')` will plot the (x, y) ordered pairs without connecting them with a continuous curve.
- `plt.plot(xVals, yVals)` will connect the points with a curve (NOT the regression curve!).
- `plt.show()` keeps the plot window up (like `turtle.exitonclick()` for x-CS151ers)
- Issuing two `plt.plot` commands before `plt.show()` will superimpose elements from the two plots into a single plot.