Plan

• Recap: Aesthetics, scale, GUI.
• Visualization coordinate systems
• 2D example
• Homogeneous coordinates
• Dot product and matrix-vector right multiplication
• Translation and scaling matrices
Data coordinates

- The native coordinates of the data space.
- The max, min, and average values of each variable are defined in this space.
- For any data set, there is a bounding box in data coordinates that contains all of the data.
- Can be any number of dimensions, depending on how many features you have in the data. 100 features: 100 dimensional data volume.
Viewing volume coordinates (1/2)

- **Viewing volume**: Volume (e.g. cube) that will contain the data that we want to visualize.

- **Extent**: SIZE of the data space that we want to view/visualize. Can be entire (or subset of) data space.
 - May be defined by max-min of some of the data variables, or a smaller portion than that.

- **Viewing volume origin**: One of the corners of the viewing volume is at 0 — where all feature values have 0 components.

- At most 3D.
Remember: Viewing volume coordinates origin at 0.

Two options to set up the view volume coordinate axes:

- Overlap / match the data coordinate axis orientations (i.e. data "x direction" points in same direction as view "x direction")
 - Then viewing volume coordinates have extent measured along the data variable directions.

- Have arbitrary oriented axes (not aligned with data axes).
 - Then viewing volume coordinates have set of orthonormal axes.
 - Extent of viewing volume measured along the orthonormal axes.
Normalized viewing volume coordinates

- Scale the data so that all visible points within the view volume fit within the range of $[0, 1]$ in all dimensions.
Observer (Screen) coordinates

- Coordinate system that coincides with the center of the virtual observer's "eye".

- Requires a **3D-to-2D projection** of the 3D world onto a 2D plane that spans the x-y axes of the virtual camera that models the observer's eye.
 - Imagine a projector screen that moves with the observer

- Think first-person shooter game
 - Data coordinates: game world, not all seen at once.
 - Observer coordinates: Virtual observer's view on your computer screen, often accompanied by a gun overlay.
Perspective projection

Two main kinds of observer view projections. First is **Perspective:**
Perspective and Orthographic projections

- **Parallel** (or Orthographic): Drop Z world coordinate of objects in sight, like if looking at the world from infinity far away (can't discern depth).
- We will only use an orthographic in this class.
Workflow to display 2D dataset

For 2D, we convert native data units -> pixels (however large our visualization app window extent is).

1. Translate (move) the data so the origin becomes 0.

 (Data -> View Volume Coordinates)

2. Normalize (scale) data so that each coordinate lies between 0 and 1.

 (View Volume Coordinates -> Normalized View Volume Coordinates)

3. Scale coordinates to extent of the app window (pixels). Y-invert because window origin is top-left, not bottom-left. Translate by screen y extent to make things positive in y.

 (Normalized View Volume Coordinates -> Screen Coordinates)
Let's work out an example with the following 2D GDP dataset

<table>
<thead>
<tr>
<th>Country</th>
<th>GDP</th>
<th>Life Expectancy (LE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Czech Republic</td>
<td>22860</td>
<td>78</td>
</tr>
<tr>
<td>United States</td>
<td>41728</td>
<td>79</td>
</tr>
<tr>
<td>China</td>
<td>8848</td>
<td>73</td>
</tr>
<tr>
<td>Russia</td>
<td>14738</td>
<td>69</td>
</tr>
</tbody>
</table>
Automating the coordinate transform process

• 3 step workflow not too bad, but would be nice if we didn't have to use lots of loops, temporary variables, etc. Especially when things get more cumbersome with 3D viewing.

• We can collapse workflow to a single line of code with linear algebra!

• The idea
 • Represent each data point as a **column vector**.
 • Offload all the coordinate transform work to a single **transformation matrix**.
 • Matrix multiplication does all the work for us!

• In fact, we can transform the data "in-place" with the concept of **homogeneous coordinates**!
Homogenous coordinates (2D)

Given the data point \((X, Y)\), its homogeneous coordinates are given by \((x, y, h)\). Convert between data and homogenous coordinates via the following:

\[
x = \frac{X}{h}
\]

\[
y = \frac{Y}{h}
\]

For data points, we always set \(h = 1\).

Let's look at an example for the GDP data.
Quick review: Dot product

Given vectors
\[\vec{\alpha} = [\alpha_0, \alpha_1, \alpha_2, \ldots, \alpha_{N-1}] \] and
\[\vec{\beta} = [\beta_0, \beta_1, \beta_2, \ldots, \beta_{N-1}] \],
the dot product yields a single scalar value after multiplying the vectors element-wise then summing:

\[\vec{\alpha} \cdot \vec{\beta} = \sum_{i=0}^{N-1} \alpha_i \beta_i \]
Quick review: Matrix-vector right multiplication

Right-multiplying\(^1\) a matrix by a vector is just \(N\) dot products, one with each matrix row and the entire column vector:

\[
A\vec{b} = \begin{bmatrix}
 a_{0,0} & a_{0,1} & a_{0,2} \\
 a_{1,0} & a_{1,1} & a_{1,2} \\
 a_{2,0} & a_{2,1} & a_{2,2}
\end{bmatrix} \begin{bmatrix}
 b_0 \\
 b_1 \\
 b_2
\end{bmatrix} = \begin{bmatrix}
 \overrightarrow{a_0} \cdot \vec{b} \\
 \overrightarrow{a_1} \cdot \vec{b} \\
 \overrightarrow{a_2} \cdot \vec{b}
\end{bmatrix} = \begin{bmatrix}
 a_{0,0}b_0 + a_{0,1}b_1 + a_{0,2}b_2 \\
 a_{1,0}b_0 + a_{1,1}b_1 + a_{1,2}b_2 \\
 a_{2,0}b_0 + a_{2,1}b_1 + a_{2,2}b_2
\end{bmatrix}
\]

It yields another column vector.

\(^1\) Remember, matrix multiplication does not commute. \(A\vec{b} \neq \vec{b}A\)
Let's work out how apply the matrix multiplication approach to the GDP example to do the translation and scaling operations.
Transformation matrices

2D Translation matrix with translation vector $\vec{t} = [t_x, t_y]$:

$$
\begin{bmatrix}
1 & 0 & -t_x \\
0 & 1 & -t_y \\
0 & 0 & 1
\end{bmatrix}
$$

2D Scaling matrix with scaling vector $\vec{s} = [s_x, s_y]$:

$$
\begin{bmatrix}
s_x & 0 & 0 \\
0 & s_y & 0 \\
0 & 0 & 1
\end{bmatrix}
$$
Let's walk through the entire GDP example with the translation and scaling matrices.
To transform more than 1 data point, we would use a matrix rather than column vector — you would line up the other data points as columns in the right-hand-side matrix \((B\) below).

Here’s a 3x3 example:

\[
AB = \begin{bmatrix}
a_{0,0}, a_{0,1}, a_{0,2} \\
a_{1,0}, a_{1,1}, a_{1,2} \\
a_{2,0}, a_{2,1}, a_{2,2}
\end{bmatrix} \begin{bmatrix}
b_{0,0}, b_{0,1}, b_{0,2} \\
b_{1,0}, b_{1,1}, b_{1,2} \\
b_{2,0}, b_{2,1}, b_{2,2}
\end{bmatrix} = \begin{bmatrix}
a_{0,*} \cdot b_{*,0} + a_{0,*} \cdot b_{*,1} + a_{0,*} \cdot b_{*,2} \\
a_{1,*} \cdot b_{*,0} + a_{1,*} \cdot b_{*,1} + a_{1,*} \cdot b_{*,2} \\
a_{2,*} \cdot b_{*,0} + a_{2,*} \cdot b_{*,1} + a_{2,*} \cdot b_{*,2}
\end{bmatrix}
\]

- Recall for non-square matrices: If \(\text{dim}(A) = R \times N\) and \(\text{dim}(B) = N \times C\) then the output matrix has dimensions \(R \times C\).
- Recall that matrix multiplication does not commute. \(AB \neq BA\).
- **In this class:** The transformation matrix will always be on the left \((A)\) and the data matrix will be on the right \((B)\).