Interactive scaling

Oliver W. Layton

CS251: Data analysis and visualization

Lecture 11, Spring 2019

Friday March 1
Plan

• Finish rotation
• Interactive scaling
• Review panning/translation
• Keyboard control
Circling rotation implementation

Compute joint x-y rotation \(X(\theta_h, \theta_v) \):

\[
T \left(VRP + \frac{E_z}{2} VPN \right) R_{XYZ}^T R_x(\theta_v) R_y(\theta_h) R_{XYZ} T \left(-VRP - \frac{E_z}{2} VPN \right)
\]

where

\[
R_x(\theta) = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & \cos(\theta) & -\sin(\theta) & 0 \\
0 & \sin(\theta) & \cos(\theta) & 0 \\
0 & 0 & 0 & 1
\end{bmatrix} \quad R_y(\theta) = \begin{bmatrix}
\cos(\theta) & 0 & \sin(\theta) & 0 \\
0 & 0 & 0 & 0 \\
-\sin(\theta) & 0 & \cos(\theta) & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]
Input to circling rotation matrix pipeline

- Input to matrix multiplication chain on last slide: observer coordinate system $\vec{U}_0, V\vec{UP}_0, V\vec{PN}_0$ (pre-rotation versions), **NOT** the data D.

- Output: "New" $\vec{U}, V\vec{UP}, V\vec{PN}$ that reflect the observer's rotated view.

- Update $\vec{U}, V\vec{UP}, V\vec{PN}$ by horizontally stacking them (column vectors) in a matrix with 0 homogeneous coordinates (M). Add VRP to M as a column vector with homogeneous coordinate 1.
 - Let's draw out why we want homogenous coordinate of 0 (not 1) for VRP.

- Multiply by the joint rotation matrix: $X(\theta_h, \theta_v)M$

- Re-build the VTM matrix (THIS affects the data matrix D).

- Update the view locations for the data and visual objects.
"Head" rotation

- Simulates the turning of the virtual observer's head, the data in the world remains fixed.

- What needs to change about our rotation workflow?
 - Rotation anchor point is observer's eye (VRP).
 - We translate by VRP rather than VRP + Ez/2 VPN. Everything else stays the same.

- Here's our joint rotation transform:

\[T(\text{VRP}) R_{XYZ}^T R_x(\theta_v) R_y(\theta_h) R_{XYZ} T(-\text{VRP}) \]
Scaling

• Think of pinching-to-zoom on iPhone. We want uniform scaling in all directions.
• Can be implemented by changing the extent (bounding box) of our view of the data.
• Scaling up (zooming in) simulates bringing view closer to the data. Effect on extent?
 • DECREASE our extent!
• Scaling down (zooming out) simulates bringing view farther from the data. Effect on extent?
 • INCREASE our extent!
• Control (B3motion in tkinter)
 • Trackpad: 1) Hold modifier key 2) click (and hold it) trackpad 3) slide finger on trackpad vertically
 • Mouse: 1) Click mouse (and hold it), 2) use scroll wheel.
Scaling implementation (1/2)

1. Save the screen position of the initial mouse click (P_0).
2. Save the initial view volume extent (E_0).
3. Define a scaling factor k_s that controls the speed of scaling/zooming.
4. For each mouse movement i:
 - Calculate the current vertical screen displacement relative to the initial click (pixels): $\Delta v = P_i y - P_0 y$
 - Convert displacement to scale factor f (1.0 means...?): $f = 1.0 + k_s \Delta v$
Scaling implementation (2/2)

- Threshold scale factor so that it doesn't grow too large (e.g. 3.0) or too small (e.g. 0.1). Why?
- Actually scale the extent: $E_i = fE_0$
- Re-build VTM
- Update the positions of data points and visual objects in the view volume.
Scaling and the orthographic pipeline

Which stage(s) of the orthographic viewing pipeline does scaling influence?

\[T_2 S_2 S_1 R_{XYZ} T_1 D \]