Analysis of Algorithms
CS 375, Spring 2019
Homework 5
Due AT THE BEGINNING OF CLASS Monday, March 4

e From your textbook (CLRS), please be sure to read Chapter 3, and begin reading
Chapter 4—we’ll start Ch. 4 in our next class meeting.

e A general note: When writing up your homework, please write neatly and explain
your answers clearly, giving all details needed to make your answers easy to un-
derstand. Graders may not award credit to incomplete or illegible solutions. Clear
communication is the point, on every assignment.

Exercises

1. Prof. E. Nigma of the Portland Institute of Technology hired you to analyze the
algorithm given here in pseudocode, but as usual, Prof. Nigma neglected to explain
what the algorithm does.

// Input: A matrix A[O..n-1, 0..n-1] of integers
for i = 0 to n-2 do
for j = i+l to n-1 do
if Ali,jl '= A[j,i]
return False
return True

In the above, recall that a matrix is essentially just a two-dimensional array, so A[i, j]
might in some languages be written as A[é|[j].

(a) What does this algorithm do? Give an English description of what inputs lead to
it returning True and what inputs lead to it returning False. (You do not need to
give examples as part of your answer, but you are welcome to include example 2D
arrays along with the English description, if it would make your answer clearer.)

(b) Give an ezact count of the number of array accesses (count A[z, y| as a single array
access) done by this algorithm in the worst case on input of size n, and based on
that, give the © complexity class for this algorithm. Be sure to explain the details
behind your answer: show all work that you did to count those operations and
arrive at a summation that expresses the running time; and briefly explain how
you got from that summation to the ® complexity bound.

2. In class, we discussed Bubble Sort and a loop invariant for it. (See the last slides
of the Feb. 25 lecture notes.) For this exercise, show the maintenance part of a cor-
rectness argument using the invariant. (You do not need to show the initialization or
termination parts.)

To do this, consider the loop invariant, presented here for convenience:

Subarray A[l..i — 1] consists of the i — 1 smallest values of A, in sorted order,
and A[i..n] consists of the remaining values of A (no constraint on order).

1



Then, to show the maintenance step, show that for the algorithm as given in lecture
notes, if the invariant is true at the beginning of an iteration, then it’s true at the end
of the iteration / the beginning of the next iteration. That is, for any iteration m, if
it’s true when ¢ = m, then it’s true when the iteration is over and ¢ becomes m+1. Use
the definition of the algorithm (i.e., the pseudocode) in the explanation. (Diagrams
or specific examples are not sufficient for an explanation, but if you’d like to include
them along with a textual explanation, feel free do so.)

. Consider this pseudocode algorithm for the sorting method Selection Sort:

SELECTIONSORT(A[L...n])
for i = 1 to length[A] — 1
min = ¢
for j =i+ 1 to length[A]
if A[j] < A[min]

min = j

// the next 3 lines swap A[i] and A[min], using a temporary variable

temp = Al

Ali] = Afmin]

A[min| = temp

(a) Give an ezact count of the number of array accesses done by this algorithm in the
worst case on input of size n, and based on that, give the © complexity class for
this algorithm. Be sure to explain the details behind your answer: show all work
that you did to count those operations and arrive at a summation that expresses
the running time; and briefly explain how you got from that summation to the ©
complexity bound.

(b) Given the following proposed loop invariant for the outer for loop of SELECTION-
SORT, explain the initialization and termination steps of a correctness argument.
That is, explain how the invariant is true when that loop is first initialized, but
before anything in the body of the loop has executed, and explain how the truth
of the invariant after the final iteration of the loop leads to the correctness of the
algorithm. (You do not need to show the maintenance step for this exercise.)

Proposed loop invariant for SELECTIONSORT:
Subarray A[l..i — 1] contains the ¢ — 1 smallest elements of A in sorted

order, and A[i..n] consists of the remaining values of A (no constraint on
order).



