Sequential Circuits

What is a Sequential Circuits

- Combinational circuits are often referred to as “memoryless” circuits, since their output depends only on their current input and no history of prior inputs is related.
- The current output of a sequential circuit depends not only on the current input, but also on the current state of the circuit.
- The simplest form of sequential circuit is flip-flop.

S-R Latch (S-R flip-flop)

- A most simple type of flip-flop.
- A S-R latch looks like below.

- It has two inputs: S (set), R (reset), and two outputs: Q and Q’.
- The truth table for S-R latch is

<table>
<thead>
<tr>
<th>S</th>
<th>R</th>
<th>Q_n (current state)</th>
<th>Q_{n+1} (next state)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>
- From the table, we can observe that when \(R = 1 \) (reset), \(Q \)'s value will become 0 no matter what is the current value of \(Q \).
- When \(S = 1 \) (set), \(Q \)'s value will become 1 regardless the current value of \(Q \).
- When \(S = R = 0 \), \(Q \)'s value remains the same.
- When \(S = R = 1 \), the outputs of the S-R latch is meaningless, as both \(Q \) and \(Q' \) become 0.

- Therefore, as long as \(S \) and \(R \) stay 0, the S-R latch is bistable.
- This bistable feature enables S-R latch being used as a 1-bit memory.

Clocked S-R Latch

- It is often convenient to prevent the latch from changing state except at certain specified times.
- Therefore, the clocked S-R latch is introduced.
- A clocked S-R latch can only be set or reset when the clock is high.
- When the clock is low, \(Q \)'s value remains the same, which is the same as when \(S = R = 0 \).
- A clock is a pulse sequence.

Locked D Latch

- There is still a problem with the clocked S-R latch needed to be address, which is that the condition \(S = R = 1 \) must be avoid.
- One way to do this is to allow just a signal input.
Edge-triggered D Latch

- We don’t want to latch onto a value the whole time the clock is high, since the value of D may change during the period.

- We just want to latch onto D on the rising edge of the clock. So we need a pulse generator.

- Take advantage of the propagation delay, we can change the value of D.

- Both b and c have propagation delay. But c’s delay is much shorter than b’s. So we can get a short pulse, and change the value of D during the short period of time.

- We then can connect the input a of the pulse generator to generate a short pulse and use that pulse to control the locked D-latch, shown as below. We call this locked D-latch, edge-triggered D latch or D flip-flop.

- D flip-flop is widely used in computer registers used to temporarily store data.