Programmable Circuits

A simple circuit: Count

- We’ve known registers, ALU, ROM, PC, and IR. Let’s build blocks, putting them together to create a simple circuit, count. Of course, you can use these components to build more complex circuits.

- This circuit is composed of two parts: execution logic and control logic.
 - **Execution logic** is to **execute an instruction**. It contains:
 - Two registers: RA and RB
 - An ALU has one control bit, which can control the two operators: Add and Pass input B to output.
 - The ALU has two inputs. Input A is from RA. Input B is one of \{RB, 1, 0, -1\}, which is the output of a MUX controlled by two bits: S_0 and S_1.
 - The ALU output is either stored in RA or RB, controlled by the control bit O_0 of a DEMUX. If O_0 is 0, output of ALU is stored in RA; Otherwise, it’s stored in RB.
 - **Control logic** contains a program memory (e.g., a ROM), a PC, and a IR, which is **in charge of the program execution**.
 - The **program** is a set of instructions. The instruction set is the space of all possible control signals. In this example, the space is 2^4 number of instructions.
 - PC tacks the address of the next instruction.
 - IR stores the current instruction, which is a sequence of control bits of the execution logic.