Set-Associative Mapping

- A comprise that exhibits the strengths of direct mapping (simple, inexpensive) and associative mapping (flexibility that blocks can be loaded to any lines) while reducing their disadvantages (fixed location for a given block - high cache miss ratio, examine every line’s tag for a match-cache searching is expensive and slow).

- It introduces a new concept cache set.
 - Cache is divided into a number of sets, \(v \)
 - Each set contains \(k \) lines
 - \(k \) lines in a set is called a k-way set associative mapping
 - Number of lines in a cache, \(m = v \times k \)
 - The idea of set-associative mapping is that a block is always mapped to a specific cache line if it’s swapped into the cache. But, it can be loaded into any line of that cache set.

- Way to calculate the cache set number of a block \(i = j \mod v \)

 where

 \(i = \) cache set number

 \(j = \) main memory block number

 \(m = \) number of lines in the cache

 \(v = \) number of sets

 \(k = \) number of lines in each set

- Note:
 - \(k = 1 \), this is direct mapping
 - \(v = 1 \), this is associative mapping
 - A given block maps to a line within its specified set

- Its address structure has three fields

<table>
<thead>
<tr>
<th>Tag: (s - r) bits</th>
<th>Set: (r) bits</th>
<th>Word: (w) bits</th>
</tr>
</thead>
</table>

- The rightmost \(w \) bits uniquely identify a word within a block
- The rightmost \(r \) bits of the remaining \(s \) bits identify which set in the cache
- The leftmost \(s - r \) bits uniquely identify the block within a set

- The way to check for hit is
• use the “set” field of the target address to find the set in cache
• compare the “tag” field of the target address with the “tag” of every line in that set.
• if a cache line in that set has the same “tag” as the target address, use the “word” field to find the target word.
• otherwise, the target word is missed in the cache, and will need to use the target address to search in the main memory and replace a block in the cache with the block where the target word is in.

If we use the same example we used in Direct Mapping, what does the address structure look like if using 2-way set-associative mapping?

• Cache size: 64 KB; block size: 4 bytes; addressable unit: byte
• Main memory size: 16 MB; address length: 24 bits
 - Num. of lines: \(\frac{64KB}{4B} = 16K = 2^{14} \)
 - Num. of blocks: \(\frac{16MB}{4B} = 4M \)

<table>
<thead>
<tr>
<th>Tag</th>
<th>Set</th>
<th>Word</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 bits</td>
<td>13 bits</td>
<td>2 bits</td>
</tr>
</tbody>
</table>
• How many bits for w? [2, as the block size is 4 bytes and each word is a byte, so need 2 bit
to specify the 4 words.]
• How many bits for r? [13, as it uses 2-way set-associative mapping, the number of lines in
a set is 2. So, k = 2. The number of lines in the cache m = \frac{64KB}{4B} = 16 \text{ K} = 2^{14}. The
number of sets v = \frac{m}{k} = \frac{2^{14}}{2} = 2^{13}. So set field needs 13 bits.]
• How many bits for tag? [9, as the address is 24-bit long, 24 - 2 - 13 = 9]

- Summary
 • Address length = (s + w) bits
 • Number of addressable units = 2^{(s+w)} words or bytes
 • Block size = line size = 2^w words or bytes
 • Number of blocks in main memory = \frac{2^{(s+w)}}{2^w} = 2^s
 • Number of lines in a set = k
 • Number of sets = v = 2^r
 • Number of lines in cache = k \times v = k \times 2^d

Many processor caches in today’s designs are either direct mapping or set-associative
mapping.

Exercise
- A machine uses 32-bit addresses. It has 1GB (2^{30}) main memory, 64KB (2^{16}) cache with 4K
(2^{12}) number of cache lines, and each cache line is 16 bytes (2^4 B). If a word (addressable
unit) is 1 byte. How many blocks map to each cache line if using direct mapping? Hint: figure
out the number lines and blocks first.
 • there are 2^{12} lines in the cache, so all blocks are mapped to one of the 2^{12} lines.
 • each cache line is 16 bytes, so the block size is 2^4 bytes.
 • so, the machine has \frac{2^{30}}{2^4} = 2^{26} blocks.
 • so, \frac{2^{26}}{2^{12}} = 2^{14} blocks map to one cache line.
Note: if the address length is fully used, then the machine will have \(\frac{2^{32}}{2^{4}} = 2^{28} \) blocks, and there are \(\frac{2^{28}}{2^{12}} = 2^{16} \) blocks map to one cache line.