Recall the statement of the Ford-Fulkerson algorithm as follows:

```python
def residualGraph(graph G, flow f):
    Initialize a new graph $G_f$ with the same vertices as $G$
    for each edge $e$ in $G$:
        Let $e^{G_f}$ denote the corresponding edge in $G_f$
        Set $c_{e^{G_f}} = c_e - f(e)$
        If $f(e) > 0$:
            Let $e^{R}$ denote the reverse edge of $e^{G_f}$.
            Set $c_{e^{R}} = f(e)$.
    return $G_f$
```

```python
def FordFulkerson(G, s, t):
    Initialize $f$ as zero flow.
    while there is an $s \rightarrow t$ path $P$ in $G_f$ where the minimum
    capacity $c$ over all the edges in $P$ is bigger than 0:
        Set $f(e) += c$ for all edges $e$ in $P$.
```

Trace through the FordFulkerson algorithm on the following input:

![Graph](image)

After determining the maximum flow, find an s-t cut with equal cut value.