Feel free to work in groups of at most 4 for these - if you have a group of more than 4, please run it by me first. If you do work in a group, please include the names of those that you worked with. However: each student should submit a separate copy where the solutions have been written by yourself.

1. (10 points) Recall the inversion problem we worked through in class. Given a list of \(n\) items \((e_1, ..., e_n)\), we say \((e_i, e_j)\) is a mega-inversion if \(e_i > 3e_j\) and \(i < j\). Design a \(O(n \log n)\)-runtime algorithm that calculates the number of mega-inversions and convince me of its correctness.

Solution: Consider the following algorithm: we recursively divide and recurse on our input. As we merge back, we will first combine our sublists as in merge sort, and then count the mega-inversions after. The following is a pseudocode implementation:

```python
def sortAndCount(list):
    n = len(list)
    if n==1:
        return 0
    else:
        (l1, c1) = sortAndCount(list[1:n/2])
        (l2, c2) = sortAndCount(list[n/2+1:n])
        (l3, c3) = mergeAndCount(l1, l2)
        return (l3, c1 + c2 + c3)

def mergeAndCount(l1, l2):
    l3 = merge(l1, l2)  # This is just the merge from MergeSort
    inversions = 0
    index1 = index2 = 0
    while index1 < len(l1) and index2 < len(l2):
        if l1[index1] > 3 * l2[index2]:
            inversions += len(l1) - index1
            index2 += 1
        else:
            index1 += 1
    return (l3, inversions)
```

First, we analyze `mergeAndCount`: let \(n\) be the maximum of the lengths of \(l1\) and \(l2\). Then we know from the analysis of mergeSort that the merge step takes \(O(n)\) time. Further, the while loop advances either \(\text{index1}\) or \(\text{index2}\) by 1 every iteration, thus the number of iterations is at most \(2n\). Since each iteration takes a constant time to run, the total runtime of `mergeAndCount` is \(O(n)\). Letting \(T(n)\) be the runtime of `sortAndCount`, we have that \(T(n) = 2T(\frac{n}{2}) + O(n) = O(n \log n)\), as shown in class.

Lastly, to see why this works: we break the argument up into two parts. First, we claim that any inversions we add are indeed inversions: note that at the moment we identify \(l1[\text{index1}] > 3 \times l2[\text{index2}]\), we know that the remaining elements past
Problem Set 2: DC & DP Solutions Due: Friday 10/15 11:59PM

2. (10 points) Imagine your buddy and you are playing a very fun version of 20 questions: your buddy has two separate lists (say list A and list B), each of n values written down behind their back. No value is repeated (meaning if 3 is in A then 3 is not in B). You are allowed to specify a list and ask for the kth smallest item, to which they must truthfully respond. So for example, you could ask for the 3rd smallest item of list B, behind their back. No value is repeated (meaning if 3 is in A then 3 is not in B). Determine a strategy of questions that will determine the median (we’ll say, the $n/2$th smallest item) of the two lists combined in $O(\log n)$ questions.

Solution: Let’s say the sorted order of A is $A = (a_1, \ldots, a_n)$ and the sorted order of B is $B = (b_1, \ldots, b_n)$. Let $k = \lfloor n/2 \rfloor$. We will ask what a_k and b_{n-k+1} are (the kth smallest item in A and the $n-k+1$th smallest in B respectively). Otherwise, we recurse on $A' = (a_1, \ldots, a_k)$ and $B' = (b_{n-k+1}, \ldots, b_n)$; if $a_k < b_k$, instead we recurse on $A' = (a_{n-k+1}, \ldots, a_n)$ and $B' = (b_1, \ldots, b_k)$. Note that $n - (n-k+1) + 1 = k$, so the lists remain the same size in recursion.

Note that if $a_k > b_{n-k+1}$, then for any $i > k$ we have that $a_i > a_k > b_k$, so $a_i > a_k, a_{k-1}, \ldots, a_1$ and $a_i > b_{n-k+1}, b_{n-k}, \ldots, b_1$. Thus there are $k + (n-k+1) = n+1$ items smaller than a_i, so a_i is bigger than the median. Similarly, for any $j < n-k+1$ we have that $b_j < b_{n-k+1} < a_k$, so $b_j < b_{n-k+1}, b_{n-k+2}, \ldots, b_n$ and $b_j < a_k, a_{k+1}, \ldots, a_n$. Thus there are $(n-(n-k+1)+1) + (n-k+1) = k+n-k+1 = n+1$ items larger than b_j, so b_j is less than the median. Note that due to the symmetry of cases, the same results apply in the case $a_k \leq b_{n-k+1}$. Thus at the moment of recursion, we remove k items less than and k items greater than the median of the combined lists. Hence, the median of the combined lists A and B is the median of the new combined lists of A' and B'.

Note that since we’re cutting our input in half each round, letting $T(n)$ denote the maximum number of questions we’d ask on an input of length n we have that $T(n) = T\left(\frac{n}{2}\right) + 2$. As shown in class, this means that $T(n) = O(\log n)$.

Thus we ask $O(\log n)$ questions and correctly identify the median.

3. (10 points) Suppose you are given $T(n) = T\left(\frac{n}{2}\right) + O(n)$. Using the tree based method described in class, show that $T(n) = O(n)$.

Solution: For this formula, we have $T(n) \leq T\left(\frac{n}{2}\right) + cn$ for some constant c. Our recursion tree is thus a path:
Hence, we have that the total work is at most $cn + c^n_2 + c^n_4 + c^n_8 + ... = cn(1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + ...) = 2cn = O(n)$.

4. The input of this problem is a list of positive numbers $(v_1, ..., v_n)$. The optimal solution is a collection of the numbers such that no two sequential numbers are taken (so if v_i is taken then v_{i-1} and v_{i+1} are off limits) but the summation of the collection is maximal.

(a) (5 points) Consider the following ‘greedy’ algorithm: sequentially choose the greatest numbers not yet chosen that are not directly before or after any numbers already chosen. Show that this algorithm is incorrect.

Solution: Consider the instance $v_1 = v_3 = 2$ and $v_2 = 3$. Then the algorithm takes v_2 first, but cannot take any others, giving a total value of 3. The optimal solution, however, gives a total value of 4 by taking v_1 and v_3. Thus the algorithm is incorrect.

(b) (5 points) Consider the following algorithm: let C_1 be the collection of all even indexed numbers, and C_2 the collection of all odd indexed numbers, and select the collection which has greater total summation. Show that this algorithm is incorrect.

Solution: Consider the instance $v_1 = v_4 = 100$ and $v_2 = v_3 = 1$. Then the algorithm either takes v_1 and v_3 or v_2 and v_4 with a total value of 101. The optimal solution, however, takes v_1 and v_4 giving a total value of 200. Thus the algorithm is incorrect.

(c) (10 points) Design a dynamic programming solution and convince me that it correct and has polynomial runtime.

Solution: We will construct an array A such that $A(i)$ will store the maximal solution on the first i values $v_1, ..., v_i$. Note that we have the following recursive formula:

$$A(i) = \max(A(i-1), A(i-2) + v_i),$$
where \(A(1) = v_1\) and \(A(0) = 0\) (since without any values the total value would be 0).

In order to compute this, initialize \(A(i) = 0\) for all \(i\) and \(A(1) = v_1\). For each index \(i = 0\) to \(n - 2\) (in that order), set \(A(i + 1) = \max(A(i + 1), A(i))\) and \(A(i + 2) = \max(A(i + 2), A(i) + v_i)\).

Since each index \(i\) only induces a constant amount of work, calculating \(A\) takes \(O(n)\) time.

In order to determine the collection itself, we can use backtracking: starting from \(i = n\) and until \(i = 0\),

i. if \(A(i) = A(i - 1)\), do not include \(v_i\) and reduce \(i\) by 1
ii. otherwise, include \(v_i\), do not include \(v_{i-1}\) and reduce \(i\) by 2.

When \(i = 0\), the set of the \(v_i\) included forms that maximal solution. Hence we can produce the collection itself in \(O(n)\) time.