Memory (IV)

Mapping Functions (III)

Set-Associative Mapping (cont.)

- Its address structure has three fields

<table>
<thead>
<tr>
<th>Tag: $s - r$ bits</th>
<th>Set: r bits</th>
<th>Word: w bits</th>
</tr>
</thead>
</table>

- The rightmost w bits uniquely identify a word within a block
- The rightmost r bits of the remaining s bits identify which set in the cache
- The leftmost $s - r$ bits uniquely identify the block within a set

- The way to check for hit is
 - use the “set” field of the target address to find the set in cache
 - compare the “tag” field of the target address with the “tag” of every line in that set.
 - if a cache line in that set has the same “tag” as the target address, use the “word” field to find the target word.
 - otherwise, the target word is missed in the cache, and will need to use the target address to search in the main memory and replace a block in the cache with the block where the target word is in.
If we use the same example we used in Direct Mapping, what does the address structure look like if using 2-way set-associative mapping?

- Cache size: 64 KB; block size: 4 bytes; addressable unit: byte
- Main memory size: 16 MB; address length: 24 bits

 \[
 \text{Num. of lines: } \frac{64KB}{4B} = 16K = 2^{14} \\
 \text{Num. of blocks: } \frac{16MB}{4B} = 4M \\
 \]

 \begin{array}{|c|c|c|}
 \hline
 \text{Tag:} & \text{Set:} & \text{Word:} \\
 \text{9 bits} & \text{13 bits} & \text{2 bits} \\
 \hline
 \end{array}

- How many bits for \(w \)? [2, as the block size is 4 bytes and each word is a byte, so need 2 bit to specify the 4 words.]
- How many bits for \(r \)? [13, as it uses 2-way set-associative mapping, the number of lines in a set is 2. So, \(k = 2 \). The number of lines in the cache \(m = \frac{64KB}{4B} = 16K = 2^{14} \). The number of sets \(v = \frac{m}{k} = \frac{2^{14}}{2} = 2^{13} \). So set field needs 13 bits.]
- How many bits for tag? [9, as the address is 24-bit long, \(24 - 2 - 13 = 9 \)]

Summary

- Address length = \((s + w)\) bits
- Number of addressable units = \(2^{(s+w)}\) words or bytes
- Block size = line size = \(2^w\) words or bytes
 - Number of blocks in main memory = \(\frac{2^{(s+w)}}{2^w} = 2^s\)
- Number of lines in a set = \(k\)
- Number of sets = \(v = 2^r\)
- Number of lines in cache = \(k \times v = k \times 2^r\)

Many processor caches in today's designs are either direct mapping or set-associative mapping.

Exercise

A machine uses 32-bit addresses. It has 1GB \(2^{30}\) main memory, 64KB \(2^{16}\) cache with 4K \(2^{12}\) number of cache lines, and each cache line is 16 bytes \(2^4\) B. If a word (addressable
unit) is 1 byte. How many blocks map to each cache line or set if using direct mapping, 2-way set associative, and 4-way set associative? Hint: figure out the number lines, sets, and blocks first.

- **Direct mapping:**
 - there are \(2^{12}\) lines in the cache, so all blocks are mapped to one of the \(2^{12}\) lines.
 - each cache line is 16 bytes, so the block size is \(2^4\) bytes.
 - so, the machine has \(\frac{2^{30}}{2^4} = 2^{26}\) blocks.
 - so, \(\frac{2^{26}}{2^{12}} = 2^{14}\) blocks map to one cache line.
 - Note: if the address length is fully used, then the machine will have \(\frac{2^{32}}{2^4} = 2^{28}\) blocks, and there are \(\frac{2^{28}}{2^{12}} = 2^{16}\) blocks map to one cache line.

- **2-way set-associative:**
 - 2-way set-associative, so each set in the cache has two lines.
 - the number of sets in the cache is \(\frac{2^{12}}{2} = 2^{11}\)
 - so, \(\frac{2^{26}}{2^{11}} = 2^{15}\) blocks map to one set.

- **4-way set-associative:**
 - 4-way set-associative, so each set in the cache has four lines.
 - the number of sets in the cache is \(\frac{2^{12}}{2^2} = 2^{10}\)
 - so, \(\frac{2^{26}}{2^{10}} = 2^{16}\) blocks map to one set.

Replacement Algorithm

- There must be a method for selecting which line in the cache is going to be replaced when there is no room for a new line.
- The algorithm is hardware implemented for better speed.
- Direct mapping
 - There is no need for a replacement algorithm.
• Each block only maps to one line, so only need to replace that line.

- Associative & Set Associative Replacement Algorithms
 • Associative & Set-associative mappings need algorithms, as there is no dedicated line for each block.
 • Least Recently Used (LRU) is a widely used replacement algorithm. It replace the block that hasn't been touched in the longest period of time.