Project 2: Algorithm Design and Explanation—Loop Invariants, Exhaustive Search, and Beyond!

In this assignment, you’ll work in teams of four to design multiple algorithms, to use loop invariants to understand and explain algorithms, and to create and deliver a presentation about some of the algorithms you designed. The goals of this project are:

- to give you practice designing algorithms—starting here with exhaustive search algorithms—and improving the efficiency of algorithms;
- to give you practice using loop invariants to explain algorithm correctness;
- to give you practice creating and giving a technical presentation; and
- to give you practice working with other students as a team.

The Project Assignment

This project is a multi-part assignment, with different deadlines for different parts. Details will be presented below. (Note: Not all details are in this Lookahead document.) As an overview, here are the parts of the project assignment, as presented in class on Oct. 17:

1. Design Exhaustive Search Algorithms Your team will collectively design exhaustive search algorithms for a variety of problems, with specifications given below.

2. Improve Time Efficiency Your team will pick one of the problems and make your exhaustive search algorithm more efficient.

3. Reduction For the same problem chosen for part 2 above—yes, make sure it’s the same one—you will reduce that problem to one of the other problems given in part 1. (This is a new topic for us—more about it soon!)

4. Create and Give a Presentation Your team will present work from all three other parts of the assignment about the problem you chose for parts 2 and 3 above, using loop invariants where appropriate to explain the correctness of your algorithms.

There are things to do for each of those parts of the assignment, as described individually below. (Note: Only part 1 is included in this Lookahead document—more is coming soon!)
1 Design Exhaustive Search Algorithms

For this project, your team will collectively solve eight problems with exhaustive search algorithms. Then, you will submit revised solutions for four of those problems: one on which you will focus heavily, including doing a presentation; and three others, for which your submission will be a simpler write-up. Instructions are below, but as always, please be in touch with any questions!

1.1 Independent Problem Solving

Your team has eight problems to solve, grouped into three Categories of related problems, described in Section 2 below. With four people in your team, each of you should come up with exhaustive search algorithms to solve two of the eight problems, under these constraints:

- Each person in your team should solve two problems, but they cannot be from the same Category.
- Your team of four people should collectively solve all eight problems—each person solving two of the eight.
- Once you’ve met as a team to divide the eight problems among the four of you, please work fully individually on these exhaustive search algorithms, not discussing them with anyone but your TAs and Prof., and not using any additional resources other than your CLRS textbook. There is, of course, a reason for this—more about this below!

Partial Deadline: Each individual on the team will submit their two exhaustive search algorithms to their Submitted Work folder by 11:59pm on Monday, October 24. (Full submission instructions to follow.) This will be graded as a Smaller Assignment for the individual submitter—not part of the project grade—and graded based on effort. Full credit will be given for strong, demonstrated effort regardless of whether or not the solutions are correct!

1.2 Team Problem Solving

Once each team member has submitted their two algorithms, your entire team should meet to discuss the algorithms. Part of the point of this is to give and receive constructive feedback to / from teammates about algorithm design, as you’re reading over each other’s work having not seen it before—if you have worked together on the initial submissions, it will diminish the value of this part of the project.

Then, for your team’s final project submission (Deadline TBA, but not before early November), your team will work together to revise and write up algorithms for three of the original eight problems, keeping in mind the following:

- Your three problems must not include the problem on which you’re doing your presentation.
- Your three problems must include one from each of the three Categories in Section 2 below.
• Each of your three algorithms should be presented as pseudocode, with a short English description of how the algorithm works, and a concise, high-level analysis of its time and space complexity. *You do not need to give a detailed correctness argument or use loop invariants for these three algorithms.*

(Full submission instructions are coming soon.)

In addition, your team will also write up an algorithm for a fourth of the eight problems presented in Section 2—the problem on which your team is choosing to focus for the remainder of the project. You will make that algorithm more time efficient, you will come up with a solution for it using a *reduction*, and you will give a presentation about it accompanied by an informative write-up that will include thorough complexity analyses and the use of loop invariants for explaining correctness. More details on that coming soon!
2 The Eight Problems to be Solved

Below are the eight problems to be solved, divided into three Categories. Note that each of the problems is a decision problem—it asks for a True / False answer to be given.

For each of the problems below, in all three Categories, your exhaustive search algorithm will need to look through either all subsets of a set or all permutations of a list. For your work, please assume that you can use algorithms to create the relevant lists for your exhaustive search, meeting the specifications given here (the same as those in our lecture notes) and with the time and space complexities given here:

- **Generate-All-Subsets** You may use a `Generate-All-Subsets(S)` algorithm that has time complexity $\Theta(n \cdot 2^n)$ and space complexity $\Theta(n \cdot 2^n)$ on input S of size n, meeting these specifications:

 - **Input:** $S = \{s_0, s_1, s_2, \ldots, s_{n-1}\}$, a set of n elements
 - **Output:** L, a list of all subsets of S

- **Generate-All-Permutations** You may use a `Generate-All-Permutations(L)` algorithm that has time complexity $\Theta(n \cdot n!)$ and space complexity $\Theta(n \cdot n!)$ on input L of size n, meeting these specifications:

 - **Input:** $L = [s_0, s_1, s_2, \ldots, s_{n-1}]$, a list of n elements
 - **Output:** PSL, a list of all permutations of L

Note that you are not told how these algorithms work, and they may not be identical to the ones we derived in class—you should just assume that they exist for your use and meet these specifications.

In addition, here are some reminders about sets and graphs that might be useful:

- The specifications for some of the problems below involve sets. Please recall that by the definition of a set, no two values in a set can be equal to each other. All of the specifications were written to be consistent with this definition.

- The specifications for some of the problems below involve graphs. Every graph G is defined as a combination of a set V of vertices in the graph and a set E of edges that connect some (or all, or none) of the vertices in the graph; for short, we say $G = (V, E)$. See CLRS, Appendix B.4 (pg. 1168) for more about graphs—and, as always, please feel free to ask me any questions about definitions regarding graphs!

The following sections give the three Categories containing the eight problems to be solved.

2.1 Category: Taking Stuff

The problems to be solved in this Category are:

1. **Fair Share** You and a friend are in a room with n valuable items—with values c_1, c_2, \ldots, c_n—and you want to take all of them! But only if you each take exactly the same value with you. Is that possible with the items in front of you?
The **Fair-Share** problem:

Input: A set \(C = \{c_1 \ldots c_n\} \) of \(n \) positive integer values (the values of the \(n \) items).

Output: *True* if there exists a subset \(S \) of \(C \) for which the sum of the values in \(S \) is *exactly* the sum of the values not in \(S \); *False* otherwise.

For example: If \(C = \{3, 6, 9, 12\} \), a correct algorithm for **Fair-Share** would return *True*, because there’s a set \(S = \{6, 9\} \) where the sum of the values is 15, and the sum of values not in \(S \) is \(3 + 12 = 15 \). On the other hand, if we consider set \(C = \{1, 5, 10, 25, 50, 100\} \), there is no set \(S \) of values from \(C \) that could equal the values not in \(S \) (try it—no subset of \(C \) works for these values!), so a correct algorithm would return *False*.

2. **Price is Exactly Right** You’re in a store with \(n \) items, with costs \(c_1, c_2 \ldots c_n \), and you have an amount \(V \) to spend on these items. Can you spend exactly \(V \) on some (or all) of the items from this store?

The **Price-Exactly-Right** problem:

Input: A set \(C = \{c_1 \ldots c_n\} \) of \(n \) positive integer values (the values of the \(n \) items); and a positive integer \(V \).

Output: *True* if there exists a subset \(S \) of \(C \) for which the sum of the values in \(S \) is *exactly* equal to \(V \); *False* otherwise.

For example: If \(C = \{1, 2, 3, 9\} \) and \(V = 12 \), a correct algorithm should return *True*, because there exists subset \(C = \{1, 2, 9\} \) for which the values add up to 12. (That’s not the only subset with values that add to 12, but one is enough for the algorithm to return *True*.) On the other hand, for the same \(C = \{1, 2, 3, 9\} \), if \(V = 8 \), there is no subset \(S \) of \(C \) for which the values of \(S \) could add up to exactly 8.

3. **Book Bag** You’re at a used book sale where there’s a deal available: If you pay a flat fee—let’s call the fee amount \(K \)—they give you a bag with a capacity of \(C \) and you can take as many books as you want, as long as they all fit in that bag. (The numbers \(K \) and \(C \) can be in whatever units you like—as long as we’re consistent throughout the problem, it doesn’t matter which they are.) You can choose books to take from a set \(B = \{b_1 \ldots b_n\} \) of \(n \) books, and each book \(b_i \) has a size \(s(b_i) \) and a value \(v(b_i) \). Is it possible to find some subset \(S \) of the books such that all the books in \(S \) could fit in the bag they give you, and the total value of the books in \(S \) add up to more than the amount \(K \) that you’d pay for the deal?

The **Book-Bag** problem:

Input: Set \(B = b_1 \ldots b_n \) so that each \(b_i \) has a positive integer size \(s_i \) and a positive integer value \(v_i \); positive integer capacity \(C \); positive integer fee \(K \).

Output: *True* if there exists a subset \(S = \{a_1 \ldots a_m\} \) of \(B \) for which the sum of the sizes \(\Sigma_{i=1}^{m}s(a_i) \) is less than or equal to \(C \) and the sum of the values \(\Sigma_{i=1}^{m}v(a_i) \) is greater than or equal to \(K \); *False* otherwise.

For example: Let \(B = \{b_1, b_2, b_3\} \) where \(b_1 \) has size 1 and value 5, \(b_2 \) has size 2 and value 12, and \(b_3 \) has size 3 and value 8. Then, if \(C = 5 \) and \(K = 18 \), a correct
algorithm should return True on inputs B, C, K, because the set of books \{b_2, b_3\} has their total size equal to 5, less than or equal to C, and their total value equal to 20, greater than or equal to K. For the same B and K, however, but $C = 4$, a correct algorithm should return False; one way to see this is that the greatest value possible for a set of books from B with total size less than or equal to 4 would be 17—from the subset \{b_1, b_2\}—and that’s not greater than or equal to K.

2.2 Category: Social Networks

In all of the problems in this Category, we’ll be using graphs to represent social networks! Every vertex in a graph will represent a person, and every edge between two people will represent that the people know each other. Please assume graphs for problems in this Category are undirected.

The problems to be solved in this Category are:

1. **Clique** A clique is defined to be a collection $C = \{c_1 \ldots c_j\}$ of people such that every pair of people in C know each other. Because we’re using a graph $G = (V,E)$ to represent the social network, a clique is a subset C of the vertices of the graph for which every pair of vertices in C has an edge between them. (C could, in principle, be equal to V, which would be a complete graph.) The question: Given a number K, is there a clique of size K in the social network we’re studying?

The Clique problem:

Input: Graph $G = (V,E)$, positive integer $K \leq |V|$.

Output: True if there is a clique C of size K in G; False otherwise.

For example: In Figure 1, the graph contains multiple cliques of size 3, such as the set \{1, 2, 4\}. The set \{1, 2, 3, 4\} is not a clique, because 3 is not connected to 4.

2. **Strangers** In the social network $G = (V,E)$, we will define a group of people $S = \{s_1 \ldots s_j\}$ to be strangers to each other when for every pair of people in S, they do not know each other. Because we’re using graph $G = (V,E)$ to represent the social network, a set of strangers is a subset S of the vertices of the graph for which no edge in E exists between any two people in S. (S could, in principle, be equal to V, which would be a maximally sparse graph.) The question: Given a number K, is there a set of strangers S of size K in the social network we’re studying?
The **Strangers** problem:

Input: Graph \(G = (V, E) \), positive integer \(K \leq |V| \).

Output: *True* if there is a set of strangers \(S \) where \(S \) has size \(K \) in \(G \); *False* otherwise.

For example: In Figure 1, the set \{2, 5\} is a set of strangers of size 2 (there are also others), but there is no set of strangers of size 3—for every three people in the graph, there’s a connection between some two of them. (Try it!)

3. **Network Cover** In the social network \(G = (V, E) \), we will define a group of people \(P = \{p_1 \ldots p_j\} \) to be a **network cover** if, across all the people in \(P \), every social connection in the network involves at least one of the people in \(P \). Because we’re using graph \(G \) to represent the social network, a network cover is a subset \(P \) of the vertices in \(G \) such that every edge in \(E \) involves at least one person in \(P \). **The question:** Given a number \(K \), is there a network cover \(P \) of size \(K \) in the social network we’re studying?

The **Network-Cover** problem:

Input: Graph \(G = (V, E) \), positive integer \(K \leq |V| \).

Output: *True* if there is a network cover \(P \) where \(P \) has size \(K \) in \(G \); *False* otherwise.

For example: In Figure 1, the set \{1, 2, 4\} is a network cover of size 3 (there are also others), but the set \{1, 4\} is not a network cover, because the connection between 2 and 3 is not covered by \{1, 4\}.

2.3 Category: Maps and Touring

In the problems in this Category, we’ll be using graphs to represent maps! Every vertex in a graph will represent a location, and every edge between two locations will represent that we can travel between those locations in either direction. Please assume graphs for problems in this Category are undirected.

For these problems, we’ll define a **tour** on a map \(G = (V, E) \): A tour is a path that starts in some initial city \(c_1 \) in \(V \) and then, following edges in \(E \), passes through every other city in \(V \) exactly once before returning to \(c_1 \). For example, in the map represented by the graph in Figure 2, one possible tour is represented by the shaded edges: the one from \(u \) to \(w \) to \(v \) to \(x \) and then back to starting city \(u \). Note that there are many possible tours through all cities on this map, this is just one possibility.

Also, for the problems in this section, note that in a tour, it doesn’t really matter which city we indicate as the starting city—since the tour goes through all of them exactly once before looping back to where it started, its starting point could equivalently be anywhere for these problems. The direction also doesn’t matter for the problems in this section, because the graphs are undirected. For example, the tour indicated by the shaded edges in Figure 2 could be viewed as starting at city \(x \) and going \(x \) to \(v \) to \(w \) to \(u \) to \(x \) just as well as \(u \) to \(w \) to \(v \) to \(x \) to \(u \).

The problems to be solved in this Category are:
1. **Traveling Salesman** In this classic CS problem, we start with a *complete* graph $G = (V, E)$, in which every pair of cities v_i, v_j in V is connected by an edge in E. In addition to the graph, there is a distance function d that gives a distance $d(v_i, v_j)$ between every pair of cities; assume that the distance is the same in either direction, so $d(v_i, v_j) = d(v_j, v_i)$ for every pair of cities.

It is our traveling salesperson’s job to make a tour—to start from their home city, then follow edges in the graph to visit every other city exactly once before returning to their home city. **The question:** Given a number K, is it possible to make a tour while covering total distance K or less?

The **Traveling-Salesman** problem:

Input: Graph $G = (V, E)$, distance function d as described above, and positive integer K.

Output: True if there is a tour of V having distance K or less; False otherwise.

For example: In Figure 2, the distance function d giving distances between cities is indicated by the number over each edge—e.g., $d(v, x) = 1$ and $d(x, w) = 5$. Consider the map in that Figure, that distance function d, and number $K = 5$. A correct algorithm would return False, because there is no tour of all those cities (remember, it has to end up back where it started!) with distance 5 or less. On the other hand, with that map, that distance function, and $K = 9$, a correct algorithm would return True—indeed, the shaded edges are a tour of distance 7, which is less than 9.

2. **Hamiltonian Tour** Unlike the Traveling Salesman example, the touring company of *Hamilton* does *not* start with a complete graph—instead, they start with some map $G = (V, E)$ that may or may not have edges between any two cities. There is also no distance function to be considered here; all that matters is whether or not they can get from one city to the next.

Their goal, however, is to make a tour, in the same technical sense of tour used in the Traveling Salesman problem—to visit every city exactly once before returning home. **The question:** Given a map $G = (V, E)$, is there a tour in the map, visiting each city exactly once before returning to the city from which it started?
The Hamiltonian-Tour problem:

Input: Graph $G = (V, E)$.

Output: True if there is a tour in G; False otherwise.

For example: In Figure 1, there are many paths that are not tours in this sense. For example, if a possible tour started at city 5, and then went to 1, and then 2 and then 3, it could not get to city 4 without going back to 1 along the way, and that’s not a tour in our sense of the word—it would visit city 1 more than once before returning to where it started. Nonetheless, there is a tour through that graph—for example, it could go from 1 to 3 to 2 to 4 to 5 before going back to 1—so a correct algorithm would return True on that graph.