ISA - Instruction Set Architecture (III)

Addressing Modes
- An instruction usually has opcode and operands.
- The opcode field of an instruction specifies the operation to be performed.
- An operand of an operation could be an address that specifies the location of the operand. The operand location refers to either GPRs or main memory addresses. An operand could also be a value that is executed by the operation.
- The destination of an operation is also an address, referring to either a GPR or a memory location.
- Regardless it’s a value or a location, the operand is represented in binary. So it’s necessary to have an addressing mode field in the instruction to indicate whether it’s a value, a register, or a memory address.
- If the operand is given via an address, the address field is relatively small comparing to the actual address length. To be able to reference a large range of locations in memory, a variety of addressing techniques have been employed.

Immediate

- **Operand value is present in the instruction**
- **Used to define constants or set initial values of variables**
- **The number will be stored in 2’s complement**
- **Advantage: no memory reference**
- **Disadvantage: the value of the number is restricted to the size of the field size.** (In most instruction sets, the size of operand field is small compared with the word length.)
Direct

- The address field contains the actual address of the operand
- So, the value of operand is not restricted by the field length. Common in earlier generations of computers, but not common on contemporary architectures
- Requires only one memory reference and no special calculation
 - Advantage: simple
 - Disadvantage: limited address space (address field is always less than a word)

Indirect

- The address field refers to the address of a word in memory, and that word contains the actual address of the operand
- The word can provide a full-length address solving the disadvantage of direct addressing
 - Advantage: large address space (word length N, address space 2^N is available)
 - Disadvantage: multiple memory references (one to get the address, one to get the value)
Example:

Given the following memory values, assume the LOAD operation loads the value at a specific address to the accumulator based on the addressing mode. What values do the following instructions load into the accumulator?

<table>
<thead>
<tr>
<th>Address</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>102</td>
</tr>
<tr>
<td>101</td>
<td>103</td>
</tr>
<tr>
<td>102</td>
<td>104</td>
</tr>
<tr>
<td>103</td>
<td>105</td>
</tr>
</tbody>
</table>

a. LOAD IMMEDIATE 100 (100)
b. LOAD DIRECT 100 (102)
c. LOAD INDIRECT 100 (104)

Register Direct

- Similar to direct addressing. The only difference is that the address field refers to a register that contains the operand.
- To clarify, if the content of R is 5, then register R5 is the intended address, and the operand value is contained in R5.
- Typically, R is 3 to 5 bits, so that a total of form 8 to 32 general-purpose registers can be referenced.
- Advantages compared with Direct:
 - small address field in the instruction
 - no memory reference (memory reference are time-consuming)
- Disadvantages compared with Direct: limited storage space (limited number of registers compared with main memory locations)
Register Indirect

- Analogous to indirect addressing. The only difference is that the address field refers to a register. The value stored in the register is the actual address of the operand in main memory.

- **Advantage** compared with Indirect:
 - *one less memory reference, and smaller address field*

- **Disadvantage compared with Indirect**:
 - limited storage space