Final Exam

- In-person exam

 • A longer quiz covers multiple topics. Five questions, and each has several sub questions.

 • The final exam will be at **9:00 am Sunday, Dec. 17 @ DIAM 142**.

 • The exam should take you about 1.5 hours, but you have 3 hours for it.

 • Close notes and close books. You can bring **one letter size cheatsheet** (both sides, handwritten or typed) and **a calculator**. No other electronic device.

 • You are expected to take the final exam individually and **sit apart from your neighbors**, at least one empty seat between you and each of your left and right neighbors.

 • It’s your responsibility to make your answers readable. All answers should be brief but clear. Make sure your answers are neat if you wish full credit. I will not take off points for trivial errors, such as misspelling. However, I will take off points if your answers are messy and difficult to read.

Wrapping up …

- Binary/Decimal

 • conversion between them

 • 2’ complement

 \[
 \begin{array}{ccccccc}
 -2^7 & 2^6 & 2^5 & 2^4 & 2^3 & 2^2 & 2^1 & 2^0 \\
 \end{array}
 \]

- Data representations

 • Octal: 3 bits per digit

 • Hex: 4 bits per digit (conversion between hex and binary)

 - The last question of Q2
- Digital logic
 - gates (AND, OR, NOT, NAND, NOR, XOR), their uses and implementations
 - circuit design (k-map)
 - truth table from question specification, k-map (00, 01, 11, 10), sum of produce
 - HW1 and Q1 (2’s complement and circuit design)
 - useful combinational circuits: MUX, DEMUX, and Decoder.
 - VHDL
 - sequential circuits: flipflops, registers
 - difference between combinational circuits and sequential circuits
 - Lecture notes: sequential circuits
 - state machines
 - programmable circuits

- Memory
 - memory hierarchy (registers, cache, main memory)
 - mapping functions: direct, associative, set associative; addressable unit: word, byte
 - average access-time, hit-rate
 - hit rate: the ratio that the accessed word is found in the faster memory
 - HW5, Q5

- ISA
 - stack architectures
 - both operands of ALU popped from the top of the stack, result of ALU push into the top of the stack

 PUSH A # push value at location A to the top of the stack
 PUSH B # push value at location B to the top of the stack
 ADD # add the top two elements of the stack and save the result back to the top of the stack
POP C # store the value at the top of the stack (which is the result) to location C

- **addressing modes** (immediate, direct, indirect, register direct, register indirect, displacement, advantages/disadvantages)

- Lecture notes for stack architectures and addressing modes

- **Assembly language**
 - the benefits of assembly language
 - two-pass assembler
 - assembly program (Examples on the notes)

- **Pipeline and superscalar**
 - pipeline improves the throughput of a processor
 - superscalar supports multiple pipelines in a processor
 - **dependencies** (RAW, WAW, WAR), possible way to address WAW and WAR dependencies (register renaming)
 - instruction issue policies (out-of-order issue, out-of-order completion)

- HW8, Q8