Application Layer (III)

Domain Name Service (cont.)

- If you are asked to implement a system to provide domain name service, there are two possible solutions, centralized database and fully distributed database. Which solution you will select?
 - If choosing the centralized one, the system has to face the possibility of a single point of failure, large traffic volume, distant centralized database, and maintenance challenges (as it’s a huge database).
 - So, the fully distributed solution will be a better solution.

- The system to provide domain name service is actually a distributed redundant, hierarchical database.
 - Root Name Servers
 - 13 logical root name servers are operated by 12 independent organizations
 - logical names in the form letter.root-servers.net, where letter ranges from a to m
 - each operator uses redundant computer equipment to provide reliable service
 - all (except B-root) operate in multiple geographical locations using anycast addressing
 - Top-level domain (TLD) servers
 - There is a TLD server cluster for each of the top-level domain (com, org, net, edu, and gov, and uk, fr, ca and jp)
 - Verisign Global Registry Services maintains the TLD servers for .com
 - Educause maintains the TLD servers for .edu
 - Authoritative DNS server
 - Every organization with publicly accessible hosts (e.g. web servers and mail servers) on the Internet must provide publicly accessible DNS records.
 - Implement own server or pay to have these records stored in an authoritative DNS server
 - Most universities and companies implement and maintain their own primary and secondary (backup) authoritative DNS servers.
 - Local DNS server
 - not strictly belong to the hierarchy
 - default name server, close to the host, may be in the same LAN
 - act as a proxy
 - can be used for DNS caching

- Query delegation
 - iterative (non-recursive): local domain name resolution
 - recursive: domain name resolution
- Example: Local Domain Name Resolution
 - If we are at Colby and want to connect to filer.colby.edu. This will lead to a local domain name resolution using Colby local DNS server.
 - ns.colby.edu (Colby local DNS server, 137.146.28.78) filer.colby.edu (137.146.23.75)

- Example: Non-local Domain Name Resolution
 - If we are at Colby and want to open abc.com. This will lead to a recursive domain name resolution.
- DNS tools:
 - nslookup google.com (brief)
 - dig google.com (medium)
 - whois google.com (detailed)

Electronic Mail — SMTP

- Designed for asynchronous message delivery
 - This means that messages can be delivered to the other end of the network, and receivers can read the messages when they are available.
 - It puts a message in a message pool and doesn't require immediate response.
 - Robustness and reliability should also be considered in the design.

- Two types of agents
 - Message Transfer Agent (MTA)
 - A software transfer a message from one computer to another computer using SMTP
 - They are also called mail servers and often keep mailboxes for email.
 - Has two queues: outgoing message queue, received message queue (inbox)
 - Message User Agent (MUA):
 - A computer program allow users to read, reply to, forward, save, and compose message
 - They are mail clients and can be on the same host as MTA or not.

- From the above figure, we can observe that there are two types of interactions (and protocols) between these two types of agents
 - MTA to MTA (SMTP/ESMTP)
 - MUA to MTA (POP-3/IMAP)
MTA to MTA

- A protocol support MTA to MTA interaction is Simple Mail Transfer Protocol (SMTP): port 25
 - If the mailbox of the message recipient is not hosted locally, the message is forwarded to another MTA. Each relaying MAT adds a Received trace header field to the top of the message header.
 - SMTP is not built with no encryption nor authentication. Since the MUA was hosted on the same host as MTA, it could rely on the system authentication for user access.
- Therefore, a “not so simple” mail transfer protocol is needed. ESMTP (extended SMTP) addresses the authentication problem, which is adopted by many current emails, and TLS (Transport Layer Security) (port 587) is used to address encryption.

SMTP Example

- We use gloin to demonstrate a SMTP communication. In this example, we transmit a message from gloin to itself. The MUA is on the same host. We will use the program mail to check the received email.

```
gloin:~> nc localhost 25
220 gloin.cs.colby.edu ESMTP Postfix (Ubuntu)
helo gloin.cs.colby.edu
250 gloin.cs.colby.edu
mail from: yingli@gloin.cs.colby.edu
250 2.1.0 Ok
rcpt to: yingli@gloin.cs.colby.edu
250 2.1.5 Ok
data
354 End data with <CR><LF>.<CR><LF>
subject: SMTP test
this is a test.
250 2.0.0 Ok: queued as 1DD9C7C007F
quit
221 2.0.0 Bye
```

- The red texts above are the responses from the mail server. The number in each response indicate the status of the mail server.
 - 220: The server is ready
 - 250 Ok: The prior request is completed
 - 354: The server is ready to receive data
• 221: end the interaction
• 550: you may receive 550 after rcpt, which means the address is not existed or it's returned by recipient's firewall.

- The green texts are the requests sent by users. The SMTP commands are:
 • helo: reach out the the server
 • mail from: followed by sender's address
 • rcpt to: followed by recipient's address
 • data: let the server know that you are going to send the message
 • subject: email subject
 • .: email body ends with a . on a newline by itself.
 • quit: end the interaction

Disclaimer: Notes adapted from the textbook and online resources.