Example: Computing factorial of a number n.

$n! = n \cdot (n-1) \cdot (n-2) \cdot (n-3) \cdots \cdot 1$

n must be an int ≥ 1.

Assume $0! = 1$

\[1! = 1 \cdot 1 = 1\]
\[2! = 2 \cdot 1 = 2 \cdot 1\]
\[3! = 3 \cdot 2 \cdot 1 = 3 \cdot (2 \cdot 1)\]
\[4! = 4 \cdot 3 \cdot 2 \cdot 1 = 4 \cdot (3 \cdot 2 \cdot 1)\]

factorial(4) = $4 \cdot$ factorial(3)

factorial(3) = $3 \cdot$ factorial(2)

factorial(2) = $2 \cdot$ factorial(1)

factorial(1) = $1 \cdot$ factorial(0)

factorial(0) is defined as 1.

$0! = \text{factorial}(0)$

= base case where problem boils down to one known number.

$[17]$
```python
def factorial(n):
    if n == 0:
        return 1
    else:
        return n * factorial(n - 1)
```

After we return a value, remember that symbol table goes away.

Base case where recursion stops.

Factorial symbol table

```
<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>3</td>
</tr>
<tr>
<td>n</td>
<td>2</td>
</tr>
<tr>
<td>n</td>
<td>1</td>
</tr>
<tr>
<td>n</td>
<td>0</td>
</tr>
</tbody>
</table>
```

Upon return where symbol table goes away.
def factorial(n):
 if n == 0:
 ans = 1
 else:
 ans = n * factorial(n-1)
 return ans