Recursion

Oliver W. Layton

CS151: Computational Thinking: Visual Media

Lecture 35, Spring 2021

Monday May 10
Academic Honesty

Support is available for you! Please reach out and we will work out a solution!
Checklist for designing recursive solutions

1. Can the problem can be built up in terms of solutions to simpler versions of the problem.
 • In order words, will calling $f()$ from within $f()$ lead to a simpler version of the same problem.
 • factorial(): factorial(n-1) from within factorial(n).

2. What's the stopping condition? How will the recursion stop?
 • For factorial: $n = 0$.
 • The stopping condition is also called the recursion base case: when the recursion "bottoms out" and gives us an actual hard value or closed form solution. DOES NOT involve calling the function again.

3. Does calling $f()$ from within $f()$ get us closer to the stopping condition?
 • If not, we'll end up in an infinite loop (infinite recursion).
 • Example: factorial(n) from within factorial(n)...the problem gets no simpler!
 • All recursive solutions need to have one more or more base cases.
Example: Summing elements in a list

Goal: Add up all the elements of a list using recursion. Example:
\[1, 1, 1, 1\] \# 4

- **Checklist item #1:** Can the problem can be built up in terms of solutions to simpler versions of the problem.
 - Yes! Sum is entire list is the first element PLUS the rest of the list.

- **Checklist item #2:** What's the stopping condition? How will the recursion stop?
 - When the right-hand list is just 1 item long.

- **Checklist item #3:** Does calling \(f() \) from within \(f() \) get us closer to the stopping condition?
 - Yes! The remaining right-hand list is getting smaller.
Recursion worksheet
A recursive tree

A tree with "fork shaped" straight segments with left and right offshoots can be designed recursively!

Same fork pattern repeats, but with smaller branches as we go up tree.
Recursion with turtle

- **Goal:** Have turtle draw a tree with "fork" shaped branches recursively with turtle.

- **Checklist item #1:** Can the problem can be built up in terms of solutions to simpler versions of the problem.
 - Yes! Tree branches are "mini-trees".

- **Checklist item #2:** What's the stopping condition? How will the recursion stop?
 - Yes! If we stop drawing when the branch size drops below some minimum value (e.g. 5).

- **Checklist item #3:** Does calling \(f() \) from within \(f() \) get us closer to the stopping condition?
 - Yes! If when we draw branches, we can make distance that turtle draws smaller.

- Let's write code that uses `turtle` to draw a tree recursively.