Network Security (I)

Security
- Security is a broad problem. In this course, we will look at securing communication protocols.
- Objectives
 - encryption
 - for the confidentiality
 - the content of the transmitted message should only be understood by the sender and receiver
 - an intercepted message cannot be understood by any interceptor/eavesdroppers
 - authentication
 - confirm the other party involved in the communication is indeed who or what they claim to be
 - no simple if we cannot communicate with the other party face-to-face
 - message integrity
 - make sure the content of the communication is not altered
 - checksumming techniques can be used to provide message integrity
 - non-repudiation
 - Non-repudiation is the concept of ensuring that a party in a dispute cannot repudiate, or refute the validity of a statement or contact

Cryptography
- Cryptographic techniques are relevant to all four objectives we described above.
- Long history since at least Julius Caesar
- Modern cryptographic techniques, including many of those used in the Internet, are based on the advances made in the past 30 years
- We only touch the essential aspects of cryptography, particular as they are practiced on the Internet.

Encryption
- Alice disguises the message/plaintext (M) by using an encryption algorithm (E).
- The encrypted message/ciphertext (C) looks unintelligible to any intruder.
- Bob receives the ciphertext and decrypted it by some decryption algorithm (D).
Encryption - Attacks

- Generally speaking, the attacks can be categorized into two groups:
 - Passive attack: intruders passively observe the cipher text, decrypt the cipher text, and then know the transmitted messages.
 - Active attack: intruders intercept the cipher text and replace with another message or modify the intercepted message and then send it to B.

Encryption Categories

- **Secret method**: \(E() \) and \(D() \)
 - Encrypt message using a secret method known by Alice and Bob only
 - Not quite feasible in Internet, as the encryption technique is available to everyone.
 - These methods are published and standardized. E.g. MD5/RFC1321, Public-Key Cryptography Standards/RFC3447, PPP Triple-DES Encryption Protocol/RFC2420.
 - So, there must be some secret information that prevents an intruder from decrypting. Therefore, the secret key is introduced.

- **Public method, secret key**: \(E_k() \) and \(D_k() \)
 - Encryption algorithm is public, but the key is private, which are known by Alice and Bob only.
 - So, even if intruders sniffer the message, they cannot interpret it without the secret key.
 - Since the sender and receiver use the same private key to encrypt messages, this type of methods are called Symmetric Key Protocols:
 - **DES** - Data Encryption Standard
 - 1977, symmetric key, 56-bit key, 64-bit data
 - **AES** - Advanced Encryption Standard
 - 1998, symmetric key, 128, 192, and 256-bit keys, 128-bit data blocks
 - However, this requires that Alice and Bob have an agreement on the private key.
 - They can first meet and agree on the key in person.
 - But, in Internet this is infeasible. Agreement on the key must be made over another secure communication. This secure communication faces the same problem.
Public method, public and private keys: $E_{pubk}(\cdot)$ and $D_{privk}(\cdot)$

- To address the issue of the agreement on the private, each person has two keys: a public key and a private key
- Public key is accessible to everyone, including intruders. Private key is accessible to the receiver only. The public key and private key are carefully selected and are paired.
- Alice uses the Bob's public key along with a standard encryption algorithm to send a message to Bob
- After Bob receives the message, he uses his private key to decrypt the ciphertext.

RSA - Rivest, Shamir, and Adleman

- 1978, public/private key algorithm, 1,024 to 4,096-bit keys (typically)

- Requirements:
 - need $K_B(\cdot)$ and $K_B^{-1}(\cdot)$ such that $K_B^{-1}(K_B(\cdot)) = \cdot$
 - given public key K_B^*, it should be impossible to compute (which is why key is 1024 to 4096 bits) private key K_B^-

- RSA: getting ready
 - message: just a bit pattern
 - bit pattern can be uniquely represented by an integer number
 - thus, encrypting a message is equivalent to encrypting a number
 - Example:
 - $m = 1001 \ 0001$. This message is uniquely represented by the decimal number 145.
 - to encrypt m, we encrypt the corresponding number, which gives a new number (the ciphertext).

Disclaimer: Notes adapted from the textbook and online resources.