Welcome To CS 375 —
Analysis of Algorithms
Colby College, Spring ’21

Course: CS 375 — Analysis of Algorithms
Lecture: M / W 1:00–2:15 PM, meetings in Davis 117 . . . It’s complicated . . .
Website URL: https://cs.colby.edu/courses/S21/cs375

Course Description

Analysis of Algorithms focuses on classic algorithms in computer science, their design, and the analysis of their correctness and efficiency. Algorithms covered include sorting, searching, and other problem solving with various data structures, including arrays, lists, trees, and graphs. Major categories of algorithm design are discussed, including the iterative, divide-and-conquer, dynamic programming, and greedy paradigms. Intractable problems are also discussed, as is the role of NP-completeness.

Prerequisites: CS231 and a 200-level Math or Statistics course.

Your Professor: Eric Aaron
Website: https://cs.colby.edu/eaaron
Office: Davis 113
Office Hours: M 2:30–4:00pm, Tu 4:00-5:00pm, W 2:30–4pm and 6:30-7:30pm,
and by email appointment (but may change)
Please feel free to come by and chat—I look forward to talking with you!
Phone/Voicemail: 207-859-5857
E-mail: eaaron@colby.edu
NB: The above email address is the best way to contact me.

Your textbook

Grading: Your grades for the course will be computed (roughly) based on

- Problem sets: 40–50%
- Concept-Heavy Intensive Problem Sets (1–2 expected): 25–35%
- Small assignments and class participation: 20–25%

The above percentages may be changed slightly if administrative concerns demand it.
Desired Course Outcomes

- Students understand and can calculate the time and space efficiency of algorithms, including big-O, big-Omega, and Theta notations.
- Students understand and can employ conventional approaches to demonstrate algorithm correctness.
- Students understand and can analyze classic sorting, searching, and graph algorithms, and their advantages and disadvantages in various contexts.
- Students understand and can design and analyze algorithms in various categories, including iterative, divide and conquer, dynamic programming, and greedy.
- Students understand the concept of NP-Completeness and its significance in studying the time efficiency of algorithms.
- Students can work in teams to understand, describe, and analyze algorithms.

Lectures, Classroom Discussions, and Classroom Accountability

All students are responsible for ALL information given in class, whether or not it is presented in any other form (handout, course website, textbook, etc.). Thus, although lecture attendance is not mandatory, it is strongly encouraged, and it is essential that students who miss lecture consult classmates and find out about any information—academic, administrative, or other—that they missed. There may be severe, unintended consequences for students who do not keep up with all information from class. It is your responsibility to see that this does not happen to you. The easiest way to ensure it: Attend every lecture.

Before each class, students are expected to review material from the previous class meeting—the new material will build upon previously covered material, so review is important for understanding new material as it is presented. It is also expected that, before each class, you will read (though not necessarily completely understand) the section of material to be covered in the next class. Please use class lecture notes and the course textbook as complementary sources of information; in cases of discrepancy, please notify your professor immediately.

There will be many opportunities for discussion and participation during class meetings; reviewing old material and reading new material can give these discussions more value for everyone in the class. An important part of the value of these discussions is explanation: It is absolutely not expected that every response in a class discussion will be correct; it is important, however, that students try to give reasons for their answers. (Note that participation is part of the course grade, which requires actively contributing to in-class discussion; the lecture notes of the first day’s class meeting contain additional details about ways to contribute to in-class discussion.)

As a courtesy to your classmates and your instructors, the use of computers, tablets, mobile phones, wearables, or other electronic devices during lectures and labs is discouraged. If for any reason it is important that you use such a device during lecture or lab, please talk with me about how best to accommodate you. Please use devices only in respectful ways, directly related to course content, during class meetings.

Homework Policies

This section presents course polices for problem sets and smaller assignments; policies for concept-heavy intensive problem sets will be presented later in the semester, when they are assigned.
Problem sets and smaller assignments should all be submitted electronically as PDFs. They are typically due at the beginning of class (1 PM) on the due date; assignments received after the beginning of class may be considered late. It is highly appreciated if these assignments are typeset instead of handwritten, though that is not required.

Both the larger problem sets and smaller assignments serve important purposes for the course, but because of their differences, different policies apply to each.

Smaller assignments Although these smaller assignments do not have as much weight in the final course grade as problem sets, it is nonetheless very important for progress in the course that each assignment be completed on time. These smaller assignments will be graded on a ✓+/ ✓/ ✓−/ 0 scale; the lateness policy is that if an assignment is handed in up to 1 week late, there is a penalty of one “level” down; after that, an automatic grade of 0 is given.

When computing your final grade, your lowest score from among the smaller assignments that were turned in (on time or late) will be dropped (see below for deadline information).

Problem sets There will be one problem set for each course module, as posted on the CS375 website; due dates / deadlines will be presented with each assignment. Any problem set submitted by its deadline will receive timely written feedback. A problem set submitted after its deadline but before feedback is given on the assignment will not be subject to a lateness penalty, but it may not be graded immediately, so the submitter may not receive written feedback before the end of the semester. Any homework submitted after feedback on the assignment has been given to the class, either by email or by discussion during a class meeting, will receive a 25% deduction. PLEASE NOTE: It is possible that, for pedagogical reasons, we will go over all or part of a problem set in class on the day it is submitted—please submit homework on time to avoid lateness penalties!

When computing your final grade, your lowest score from among the problem sets that were turned in (on time or late) will be dropped (see below for deadline information).

No homework (Problem Set or Smaller Assignment) will be accepted for credit—even as a lowest grade to be dropped—after the last day of classes.

As always, indicate all sources of assistance and collaborators on every submitted assignment.

As with all policies, homework and grading policies are intended to be fair to everyone involved in the course. They will be enforced fairly. Please feel free to ask me any questions about specific cases that may emerge over the semester!

Policy on Collaboration and Academic Integrity

There may be homework exercises on which collaboration is forbidden; such exercises will be explicitly noted by your professor. In other instances, however, collaboration will be permitted.

On homework exercises where collaboration is permitted, you are encouraged to discuss approaches to solving problems on a general level with your classmates (as well as your professor, of course!). Unless permission has been explicitly given by your professor, however, you may not discuss specifics with your classmates, and the expression of your answer and your written work must be entirely your own. (Assignments done in teams are examples where permission has been granted!) As part of this, in cases of collaboration, if you know the answer and a classmate does not, telling them the answer is a violation of class policy; if a classmate needs further assistance, they should see your professor or TA (if applicable).

Receiving and copying solutions from any source (a classmate, a friend, a published text, an online source, etc.) is disallowed; unless explicitly permitted, using proofs or other material as “inspiration” and submitting highly derivative solutions is viewed as copying. In general, on as-
signments, using any resources (electronic or print, online or otherwise) other than those explicitly permitted as course resources is prohibited. Furthermore, on each submitted assignment, you should always cite and acknowledge (i.e., write down on the submitted assignment) everyone with whom you discussed the assignment and all sources you consulted or from which you received assistance, including your textbook, your TAs, your classmates, or other people.

Your professor reserves the right to ask students to verbally explain the reasoning behind any answer or code that they submit and to modify project grades based on the answers. It is vitally important that you turn in work that is your own! Reports of academic dishonesty are handled by an academic review board and a finding of academic dishonesty may result in significant sanctions. For more details on Colby’s Academic Integrity policies and procedures, see https://www.colby.edu/academicintegrity/.

On exams, collaboration will not be allowed unless explicitly indicated by your professor.

In general, the highest level of academic integrity is expected of every student in this class. If there are any questions about collaboration or related policies, please come talk with me!

The Colby Affirmation

Colby College is a community dedicated to learning and committed to the growth and well-being of all its members.

As a community devoted to intellectual growth, we value academic integrity. We agree to take ownership of our academic work, to submit only work that is our own, to fully acknowledge the research and ideas of others in our work, and to abide by the instructions and regulations governing academic work established by the faculty.

As a community built on respect for ourselves, each other, and our physical environment, we recognize the diversity of people who have gathered here and that genuine inclusivity requires active, honest, and compassionate engagement with one another. We agree to respect each other, to honor community expectations, and to comply with College policies.

As a member of this community, I pledge to hold myself and others accountable to these values.

https://www.colby.edu/catalogue/front-of-catalogue/colby-affirmation/

Statement regarding Academic Accommodations The following is the standard suggested language regarding Academic Accommodations at Colby. It applies to this course.

I am available to discuss academic accommodations that any student with a documented disability may require. Please note that you’ll need to provide a letter from the Dean of Studies Office documenting your approved accommodations. Please meet with me within two weeks of the start of the semester to make a request for accommodations so that we can work together with the College to make the appropriate arrangements for you. Kate McLaughlin, Associate Director of Access and Disability Services (kmclaugh@colby.edu), is the primary contact for accommodations and any questions related to educational testing and documentation.

Mental health: I care about our students’ well-being and understand they may face mental health challenges. Students are encouraged to seek support from the College’s available resources, including your advising dean and Counseling Services. (For immediate care, please call 207-859-4490 and press “0” to reach the on-call counselor.) I am willing to discuss reasonable accommodations during a crisis, but to fulfill our educational mission, students are expected to adhere to the attendance policy. Failure to do so because of mental health challenges may require consultation with the Dean of Studies Office.
Religious Holidays The following is standard suggested language regarding Religious Holidays at Colby. It applies to this course.

Colby College supports the religious practices of students, faculty, and staff. Students are expected to notify their instructors of their intent to fulfill the obligations of their religious tradition well in advance of these days. For this class I ask that you notify me by e-mail at least 14 days in advance of the date in question.