Semantics (II)

What is the program state?
- The state of a program is the binding of all variables to their current values.
- A variable and its value can be modeled as an ordered pair, e.g. <i, 5>
- A state is a set of ordered pairs (dictionary)

\[
state = \{ <var_1, val_1>, <var_2, val_2>, \ldots <var_m, val_m> \}
\]

- A program can have more than one states.
 - A state is a snapshot of the memory of the variables used by a program. After each statement execution, the program will have a new snapshot.

Example
 - The program calculates factorial. Show the states of this program.

<table>
<thead>
<tr>
<th>Snapshot</th>
<th>Before Statement</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>{<a, undef>, <b, undef>}</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>{<a, 1>, <b, undef>}</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>{<a, 1>, <b, 2>}</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>{<a, 1>, <b, 3>}</td>
</tr>
</tbody>
</table>

Meaning Function of Clite
- We know that the input of the semantics analysis stage of compilation is an abs syntax tree.
- So, to determine the meaning of a abs tree, we will figure out the precise meaning of each node/subtree of its abs tree.
- Consider an assignment statement. What do assignment statements do?
 • Modify the “state” of the program or the contents of the computer’s memory.
 • How do we indicate that mathematically?

 \[\text{old state} \rightarrow \text{new state} \]

 • This sounds like a function with input and output. An assignment statement is just a
 function that takes a state as input and outputs a state.

 \[M(\text{assignment}, \text{oldstate}) = \text{newstate} \]

 - \(M \) stands for “meaning”. The above function reads as “the meaning of this assignment
 statement in this state is this new state”

- An if statement changes the state as well. So use the same methodology, we can define the
 meaning function for if statement as

 \[M(\text{ifstatement}, \text{oldstate}) = \text{newstate} \]

- We can also use the same methodology to define the meaning function for a block.

 \[M(\text{blockstatement}, \text{oldstate}) = \text{newstate} \]

- Actually, all Clite statements are just functions from \(\text{state1} \rightarrow \text{state2} \)

- We will combine all these functions into one function that takes two parameters.

 \[M : \text{Statement} \times \text{State} \rightarrow \text{State} \]

 - The meaning of a statement is a new state that depends both on the old state and the
 statement being executed.

- Follow the same methodology, we can define the function for Program and Expression:

 \[M : \text{Program} \rightarrow \text{State} \]
 \[M : \text{Expression} \times \text{State} \rightarrow \text{Value} \]

- A value could be any kind of r-value such as an integer, float, or any other mathematically
 precise object.

- Let’s start implementing \(M \) for Clite.

- Note that, since we are thinking of expressions and statements in terms of the abs tree, and
 since the meanings of each programming component (e.g., expression, assignment,
 statement, etc.) depend on the meaning of the subtrees, guess what we will have when we
 implement these functions? [Lots of recursion]
Program Meaning Function

- The meaning function of Program can be implemented into this.

\[M : \text{Program} \rightarrow \text{State} \]

\[M(\text{Program} \ p) = M(\text{p.body, InitialState(}p.\text{decpart)}) \]

- If we have a Program p, the implemented function should take two parameters, the body of p and the initial state of p’s decomp.

- In this implementation, the InitialState is an auxiliary function that creates a state containing all the variables declared in p.decpart paired with their default values.

- For example, if int x = 0, y = 0; is p.decpart in C, then initState(p.decpart) = \{<x,0>, <y,0>\}.

- Note:
 - The “meaning” of a Program is the final state of the computer’s memory when the program halts.
 - The p.body part uses recursion. Depends on the statement type in p.body, it will be implemented differently. For example, expression will have a different semantics than assignment.

InitialState in Programming Languages

- The InitialState function must be clearly defined for a language in order for programs to have meaning. [show initialState.c, initialState.java, initialState2.java]

- C does not initialize the memory space. If not explicit initialization, the initial value of a variable is the random value stored in that memory space. (So, initialState.c gives different results every time you run it)

```c
/**
 * initialState.c
 * Ying Li
 */
#include <stdio.h>
int main () {
    int sum;
    for (int i = 0; i < 10; i++) {
        sum += 5;
    }
    printf("sum = %d \n", sum);
    return 0;
}
```
Java requires the variables being initialized before using. So `InitialState.java` gives an error for no initialization. But if the variables are fields in a class, even without a constructor, `InitialState2.java` won’t complain, since a default constructor will be called. Default constructor will initialize the variables to the default values of their types, e.g. int is 0, float is 0.0 and string is "".