CS 376 – Algorithm Design and Analysis

Professor Eric Aaron

Propositions

• Defn: *proposition* – a statement that has the property of truth or falsity
• Propositions are the key elements to represent, analyze, or explain declarative knowledge

Propositions:
- Washington, D.C. is the capital of the USA.
- Poughkeepsie is the capital of New York.
- \[1 + 1 = 2 \]
- \[2 + 2 = 3 \]

Non-Propositions:
- What time is it?
- Pass the salt.
- \[x + 1 = 2 \]
- \[x^y + 5z \] presuming values for \(x, y, z \) are not given / known

The first and third of these are true; the second and fourth are false.
Propositional operators

- Recall: proposition – a statement that has the property of truth or falsity
 - Often, we use propositional letters (or variables) to represent propositions: e.g., \(p \) stands for “Poughkeepsie is the capital of NY”

- There are several operators (sometimes called boolean operators) that can construct new propositions from old ones
 - Negation (“not”): if \(P \) is a proposition, \(\neg P \) is a proposition
 - Conjunction ("and"): \(P \) and \(Q \)
 - Disjunction ("or"): \(P \) or \(Q \)
 - Implication ("if – then"): if \(P \) then \(Q \)
 - Equivalence ("is equal / equivalent to"): \(P \iff Q \)
 - Equivalence can also be written as "if and only if"

Propositional operator: Negation

- Whatever the value of \(p \), True or False, the value of proposition \(\neg p \) (written \(\neg p \)) is the opposite
 - If \(p \) is “Today is Monday,” \(\neg p \) is “It is not the case that today is Monday,” or more simply “Today is not Monday.”
- Negation can be expressed with a truth table

<table>
<thead>
<tr>
<th>(p)</th>
<th>(\neg p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>
Propositional operator: Conjunction

- Conjunction—the “and” operator
 - Whatever the values of propositions p, q, conjunction p and q (written $p \land q$ or $p \& \& q$) is also a proposition
 - If p is “Today is Monday” and q is “It is snowing today,” then $p \land q$ is “Today is Monday and it is snowing today.”
 - $p \land q$ is true on snowy Mondays and false on any day that is not Monday, and on any day that is Monday but not snowing
- Conjunction values as a truth table

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>$p \land q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

Propositional operator: Disjunction

- Disjunction—the “or” operator
 - Whatever the values of propositions p, q, disjunction p or q (written $p \lor q$ or $p \| q$) is also a proposition
 - If p is “Today is Monday” and q is “It is snowing today,” then $p \lor q$ is “Today is Monday or it is snowing today.”
 - $p \lor q$ is true on any day that is a Monday or on which it is snowing – including snowy Mondays (it is not exclusive) – and false only on days that are not Mondays on which it is not snowing
- Disjunction values as a truth table

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>$p \lor q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

The non-exclusive sense of “or” can be a bit subtle

Exercise: What would the exclusive-or operator’s truth table look like?

It turns out there is such an operator, and it’s commonly used in logic! The English word “or” is a complicated thing to understand!
Propositional operator: Implication

- Implication—the “if…then” operator (also called conditional)
 - Whatever the values of propositions p, q, implication $p \implies q$ (written $p \rightarrow q$) is also a proposition
 - If p is “Today is Monday” and q is “It is snowing today,” then $p \rightarrow q$ is “If today is Monday then it is snowing today.”
 - Vocabulary: in $p \rightarrow q$, p is called the hypothesis (or antecedent) and q is called the conclusion (or consequent)

- Implication values as a truth table

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>$p \rightarrow q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

Really? These are the truth values for implication? They look like the values for ($\neg p \lor q$)! (Exercise: Check for yourselves!!)

Sounds if-y: Material Implication

- Meaning for implication symbol \rightarrow in propositional logic is referred to as material implication
 - It says that $p \rightarrow q$ is False exactly when p is True and q is False
 - Not the same as every meaning of “if…then” in English, but it’s what’s used in logic

Examples of material implication and natural language usage:
- Politician says: “If I am elected, then I will fix the environment”
 - False if the speaker is elected and doesn’t fix the environment
 - True if, e.g., the speaker doesn’t get elected
- “If today is Friday, then $2 + 2 = 4$”
 - True no matter what day it is
- “If today is Friday, then $2 + 2 = 5$”
 - True except on Fridays, even though $2 + 2 = 5$ is false!
Properties of operators

• Logical operators have an order of operations just like mathematical operators
 – From high to low: negation; conjunction; disjunction; implication
 • Conjunction is kinda like multiplication; disjunction is kinda like addition
 • Math: -k * (x + y)
 • Logic: \(\neg p \land (q \lor r) \)
• Also similarly, disjunction and conjunction are commutative and associative
 – Associative: e.g., \(p \land q \land r \) is \((p \land q) \land r \)
 – Commutative: e.g., \(p \land q \) is \(q \land p \)
 • similar with disjunction
• Implication is right-associative
 – \(p \rightarrow q \rightarrow r \) is \(p \rightarrow (q \rightarrow r) \)

The biconditional (or equivalence) operator

• The biconditional (or equivalence) operator:
 – If \(p \) and \(q \) are propositions, then \(p \leftrightarrow q \) is a proposition, read as “\(p \) if and only if \(q \)”
 – \(p \leftrightarrow q \) is true exactly when \(p \) and \(q \) have the same truth values
• What does the truth table for \(\leftrightarrow \) look like?
• How could we define the biconditional in terms of operators we already know (not, and, or, if… then)?

The equivalence operator can also be written as \(= \) or \(== \) in other contexts.
Exercise: Evaluating boolean expressions

- Defn: Propositions are boolean-valued expressions—i.e., their values are either True or False
- Boolean expressions are evaluated like any other mathematical expressions

Examples: Let p = True, q = False, r = True. What do the following expressions evaluate to?
1. \(p \land \neg r \)
2. \(q \lor False \)
3. \(p \rightarrow q \)
4. \(q \leftrightarrow p \)
5. \(q \leftrightarrow \neg True \)
6. \(r \lor (p \land q) \)
7. \((p \lor r) \rightarrow ((p \lor q) \land r) \)
8. \(True \rightarrow r \)
Compound propositions and their truth tables

- Just as we use truth tables to understand meanings of propositional operators, we can also use them to understand compound propositions.
 - The truth table for \((p \lor \neg q) \rightarrow (p \land q)\):

<table>
<thead>
<tr>
<th></th>
<th>(p)</th>
<th>(q)</th>
<th>(\neg q)</th>
<th>(p \lor \neg q)</th>
<th>(p \land q)</th>
<th>((p \lor \neg q) \rightarrow (p \land q))</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>
Exercise: Truth tables for compound propositions

- What are truth tables for the following propositions?
 1. $p \rightarrow \neg p$
 2. $p \leftrightarrow \neg p$
 3. $(p \rightarrow q) \land (\neg p \rightarrow q)$
 4. $(p \lor q) \land r$
 5. $p \rightarrow (\neg q \lor r)$